Patents by Inventor Matthew N. Rocklein

Matthew N. Rocklein has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200251334
    Abstract: Methods, apparatuses, and systems related to formation of an atomic layer of germanium (Ge) on a substrate material are described. An example method includes introducing, into a semiconductor processing chamber housing a substrate material having a high aspect ratio, a reducing agent, and introducing, into the semiconductor processing chamber, a germanium amidinate precursor. The example method further includes forming an atomic layer of germanium on the substrate material resulting from a reaction of the reducing agent and the germanium amidinate precursor.
    Type: Application
    Filed: February 6, 2019
    Publication date: August 6, 2020
    Inventors: Francois H. Fabreguette, Paul A. Paduano, Gurtej S. Sandhu, John A. Smythe, III, Matthew N. Rocklein
  • Publication number: 20200212299
    Abstract: Semiconductor memory devices, resistive memory devices, memory cell structures, and methods of forming a resistive memory cell are provided. One example method of a resistive memory cell can include a number of dielectric regions formed between two electrodes, and a barrier dielectric region formed between each of the dielectric regions. The barrier dielectric region serves to reduce an oxygen diffusion rate associated with the dielectric regions.
    Type: Application
    Filed: March 9, 2020
    Publication date: July 2, 2020
    Inventors: Matthew N. Rocklein, D.V. Nirmal Ramaswamy
  • Publication number: 20200203350
    Abstract: Some embodiments include an integrated capacitor assembly having a conductive pillar supported by a base, with the conductive pillar being included within a first electrode of a capacitor. The conductive pillar has a first upper surface. A dielectric liner is along an outer surface of the conductive pillar and has a second upper surface. A conductive liner is along the dielectric liner and is included within a second electrode of the capacitor. The conductive liner has a third upper surface. One of the first and third upper surfaces is above the other of the first and third upper surfaces. The second upper surface is at least as high above the base as said one of the first and third upper surfaces. Some embodiments include memory arrays having capacitors with pillar-type first electrodes.
    Type: Application
    Filed: March 1, 2020
    Publication date: June 25, 2020
    Applicant: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, Matthew N. Rocklein, Brett W. Busch
  • Patent number: 10600788
    Abstract: Some embodiments include an integrated capacitor assembly having a conductive pillar supported by a base, with the conductive pillar being included within a first electrode of a capacitor. The conductive pillar has a first upper surface. A dielectric liner is along an outer surface of the conductive pillar and has a second upper surface. A conductive liner is along the dielectric liner and is included within a second electrode of the capacitor. The conductive liner has a third upper surface. One of the first and third upper surfaces is above the other of the first and third upper surfaces. The second upper surface is at least as high above the base as said one of the first and third upper surfaces. Some embodiments include memory arrays having capacitors with pillar-type first electrodes.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: March 24, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, Matthew N. Rocklein, Brett W. Busch
  • Patent number: 10586923
    Abstract: Semiconductor memory devices, resistive memory devices, memory cell structures, and methods of forming a resistive memory cell are provided. One example method of a resistive memory cell can include a number of dielectric regions formed between two electrodes, and a barrier dielectric region formed between each of the dielectric regions. The barrier dielectric region serves to reduce an oxygen diffusion rate associated with the dielectric regions.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: March 10, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Matthew N. Rocklein, D. V. Nirmal Ramaswamy
  • Publication number: 20190386015
    Abstract: A method of forming a ferroelectric memory cell. The method comprises forming an electrode material exhibiting a desired dominant crystallographic orientation. A hafnium-based material is formed over the electrode material and the hafnium-based material is crystallized to induce formation of a ferroelectric material having a desired crystallographic orientation. Additional methods are also described, as are semiconductor device structures including the ferroelectric material.
    Type: Application
    Filed: August 26, 2019
    Publication date: December 19, 2019
    Inventors: Qian Tao, Matthew N. Rocklein, Beth R. Cook, Durai Vishak Nirmal Ramaswamy
  • Patent number: 10438643
    Abstract: Methods of operating a ferroelectric memory cell. The method includes applying one of a positive bias voltage and a negative bias voltage to a ferroelectric memory cell having a capacitor including a top electrode, a bottom electrode, a ferroelectric material between the top electrode and the bottom electrode, and an interfacial material between the ferroelectric material and one of the top electrode and the bottom electrode. Another of the positive bias voltage and the negative bias voltage is applied to the ferroelectric memory cell to switch a polarization of the ferroelectric memory cell, wherein an absolute value of the negative bias voltage is different from an absolute value of the positive bias voltage. Related ferroelectric memory cells include a ferroelectric material exhibiting asymmetric switching properties.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: October 8, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Steven C. Nicholes, Ashonita A. Chavan, Matthew N. Rocklein
  • Patent number: 10403630
    Abstract: A method of forming a ferroelectric memory cell. The method comprises forming an electrode material exhibiting a desired dominant crystallographic orientation. A hafnium-based material is formed over the electrode material and the hafnium-based material is crystallized to induce formation of a ferroelectric material having a desired crystallographic orientation. Additional methods are also described, as are semiconductor device structures including the ferroelectric material.
    Type: Grant
    Filed: August 9, 2018
    Date of Patent: September 3, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Qian Tao, Matthew N. Rocklein, Beth R. Cook, D. V. Nirmal Ramaswamy
  • Publication number: 20190267383
    Abstract: A DRAM capacitor comprising a first capacitor electrode configured as a container and comprising a doped titanium nitride material, a capacitor dielectric on the first capacitor electrode, and a second capacitor electrode on the capacitor dielectric. Methods of forming the DRAM capacitor are also disclosed, as are semiconductor devices and systems comprising such DRAM capacitors.
    Type: Application
    Filed: February 23, 2018
    Publication date: August 29, 2019
    Inventors: Matthew N. Rocklein, Paul A. Paduano, Sanket S. Kelkar, Christopher W. Petz, Zhe Song, Vassil Antonov, Qian Tao
  • Publication number: 20190103151
    Abstract: Methods of operating a ferroelectric memory cell. The method comprises applying one of a positive bias voltage and a negative bias voltage to a ferroelectric memory cell comprising a capacitor including a top electrode, a bottom electrode, a ferroelectric material between the top electrode and the bottom electrode, and an interfacial material between the ferroelectric material and one of the top electrode and the bottom electrode. The method further comprises applying another of the positive bias voltage and the negative bias voltage to the ferroelectric memory cell to switch a polarization of the ferroelectric memory cell, wherein an absolute value of the negative bias voltage is different from an absolute value of the positive bias voltage. Ferroelectric memory cells are also described.
    Type: Application
    Filed: November 19, 2018
    Publication date: April 4, 2019
    Applicant: Micron Technology, Inc.
    Inventors: Steven C. Nicholes, Ashonita A. Chavan, Matthew N. Rocklein
  • Patent number: 10192605
    Abstract: Methods of operating a ferroelectric memory cell. The method comprises applying one of a positive bias voltage and a negative bias voltage to a ferroelectric memory cell comprising a capacitor including a top electrode, a bottom electrode, a ferroelectric material between the top electrode and the bottom electrode, and an interfacial material between the ferroelectric material and one of the top electrode and the bottom electrode. The method further comprises applying another of the positive bias voltage and the negative bias voltage to the ferroelectric memory cell to switch a polarization of the ferroelectric memory cell, wherein an absolute value of the negative bias voltage is different from an absolute value of the positive bias voltage. Ferroelectric memory cells are also described.
    Type: Grant
    Filed: December 26, 2017
    Date of Patent: January 29, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Steven C. Nicholes, Ashonita A. Chavan, Matthew N. Rocklein
  • Publication number: 20190027478
    Abstract: Some embodiments include an integrated capacitor assembly having a conductive pillar supported by a base, with the conductive pillar being included within a first electrode of a capacitor. The conductive pillar has a first upper surface. A dielectric liner is along an outer surface of the conductive pillar and has a second upper surface. A conductive liner is along the dielectric liner and is included within a second electrode of the capacitor. The conductive liner has a third upper surface. One of the first and third upper surfaces is above the other of the first and third upper surfaces. The second upper surface is at least as high above the base as said one of the first and third upper surfaces. Some embodiments include memory arrays having capacitors with pillar-type first electrodes.
    Type: Application
    Filed: June 8, 2018
    Publication date: January 24, 2019
    Applicant: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, Matthew N. Rocklein, Brett W. Busch
  • Publication number: 20190027477
    Abstract: Some embodiments include an integrated capacitor assembly having a conductive pillar supported by a base, with the conductive pillar being included within a first electrode of a capacitor. The conductive pillar has a first upper surface. A dielectric liner is along an outer surface of the conductive pillar and has a second upper surface. A conductive liner is along the dielectric liner and is included within a second electrode of the capacitor. The conductive liner has a third upper surface. One of the first and third upper surfaces is above the other of the first and third upper surfaces. The second upper surface is at least as high above the base as said one of the first and third upper surfaces. Some embodiments include memory arrays having capacitors with pillar-type first electrodes.
    Type: Application
    Filed: July 21, 2017
    Publication date: January 24, 2019
    Inventors: GURTEJ S. SANDHU, MATTHEW N. ROCKLEIN, BRETT W. BUSCH
  • Patent number: 10177152
    Abstract: Some embodiments include an integrated capacitor assembly having a conductive pillar supported by a base, with the conductive pillar being included within a first electrode of a capacitor. The conductive pillar has a first upper surface. A dielectric liner is along an outer surface of the conductive pillar and has a second upper surface. A conductive liner is along the dielectric liner and is included within a second electrode of the capacitor. The conductive liner has a third upper surface. One of the first and third upper surfaces is above the other of the first and third upper surfaces. The second upper surface is at least as high above the base as said one of the first and third upper surfaces. Some embodiments include memory arrays having capacitors with pillar-type first electrodes.
    Type: Grant
    Filed: July 21, 2017
    Date of Patent: January 8, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, Matthew N. Rocklein, Brett W. Busch
  • Publication number: 20180350824
    Abstract: A method of forming a ferroelectric memory cell. The method comprises forming an electrode material exhibiting a desired dominant crystallographic orientation. A hafnium-based material is formed over the electrode material and the hafnium-based material is crystallized to induce formation of a ferroelectric material having a desired crystallographic orientation. Additional methods are also described, as are semiconductor device structures including the ferroelectric material.
    Type: Application
    Filed: August 9, 2018
    Publication date: December 6, 2018
    Inventors: Qian Tao, Matthew N. Rocklein, Beth R. Cook, D.V. Nirmal Ramaswamy
  • Patent number: 10147474
    Abstract: Methods of operating a ferroelectric memory cell. The method comprises applying one of a positive bias voltage and a negative bias voltage to a ferroelectric memory cell comprising a capacitor including a top electrode, a bottom electrode, a ferroelectric material between the top electrode and the bottom electrode, and an interfacial material between the ferroelectric material and one of the top electrode and the bottom electrode. The method further comprises applying another of the positive bias voltage and the negative bias voltage to the ferroelectric memory cell to switch a polarization of the ferroelectric memory cell, wherein an absolute value of the negative bias voltage is different from an absolute value of the positive bias voltage. Ferroelectric memory cells are also described.
    Type: Grant
    Filed: December 26, 2017
    Date of Patent: December 4, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Steven C. Nicholes, Ashonita A. Chavan, Matthew N. Rocklein
  • Patent number: 10062703
    Abstract: A method of forming a ferroelectric memory cell. The method comprises forming an electrode material exhibiting a desired dominant crystallographic orientation. A hafnium-based material is formed over the electrode material and the hafnium-based material is crystallized to induce formation of a ferroelectric material having a desired crystallographic orientation. Additional methods are also described, as are semiconductor device structures including the ferroelectric material.
    Type: Grant
    Filed: March 15, 2017
    Date of Patent: August 28, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Qian Tao, Matthew N. Rocklein, Beth R. Cook, D. V. Nirmal Ramaswamy
  • Publication number: 20180137905
    Abstract: Methods of operating a ferroelectric memory cell. The method comprises applying one of a positive bias voltage and a negative bias voltage to a ferroelectric memory cell comprising a capacitor including a top electrode, a bottom electrode, a ferroelectric material between the top electrode and the bottom electrode, and an interfacial material between the ferroelectric material and one of the top electrode and the bottom electrode. The method further comprises applying another of the positive bias voltage and the negative bias voltage to the ferroelectric memory cell to switch a polarization of the ferroelectric memory cell, wherein an absolute value of the negative bias voltage is different from an absolute value of the positive bias voltage. Ferroelectric memory cells are also described.
    Type: Application
    Filed: December 26, 2017
    Publication date: May 17, 2018
    Inventors: Steven C. Nicholes, Ashonita A. Chavan, Matthew N. Rocklein
  • Patent number: 9899072
    Abstract: Methods of operating a ferroelectric memory cell. The method comprises applying one of a positive bias voltage and a negative bias voltage to a ferroelectric memory cell comprising a capacitor including a top electrode, a bottom electrode, a ferroelectric material between the top electrode and the bottom electrode, and an interfacial material between the ferroelectric material and one of the top electrode and the bottom electrode. The method further comprises applying another of the positive bias voltage and the negative bias voltage to the ferroelectric memory cell to switch a polarization of the ferroelectric memory cell, wherein an absolute value of the negative bias voltage is different from an absolute value of the positive bias voltage. Ferroelectric memory cells are also described.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: February 20, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Steven C. Nicholes, Ashonita A. Chavan, Matthew N. Rocklein
  • Publication number: 20170346007
    Abstract: Semiconductor memory devices, resistive memory devices, memory cell structures, and methods of forming a resistive memory cell are provided. One example method of a resistive memory cell can include a number of dielectric regions formed between two electrodes, and a barrier dielectric region formed between each of the dielectric regions. The barrier dielectric region serves to reduce an oxygen diffusion rate associated with the dielectric regions.
    Type: Application
    Filed: July 28, 2017
    Publication date: November 30, 2017
    Inventors: Matthew N. Rocklein, D.V. Nirmal Ramaswamy