Patents by Inventor Matthias Peter

Matthias Peter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8994000
    Abstract: An optoelectronic semiconductor chip comprises the following sequence of regions in a growth direction (c) of the semiconductor chip (20): a p doped barrier layer (1) for an active region (2), the active region (2), which is suitable for generating electromagnetic radiation, the active region being based on a hexagonal compound semiconductor, and an n doped barrier layer (3) for the active region (2). Also disclosed are a component comprising such a semiconductor chip, and to a method for producing such a semiconductor chip.
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: March 31, 2015
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Adrian Avramescu, Volker Härle, Lutz Höppel, Matthias Peter, Matthias Sabathil, Uwe Strauss
  • Patent number: 8907359
    Abstract: An optoelectronic semiconductor component comprising a semiconductor layer sequence (3) based on a nitride compound semiconductor and containing an n-doped region (4), a p-doped region (8) and an active zone (5) arranged between the n-doped region (4) and the p-doped region (8) is specified. The p-doped region (8) comprises a p-type contact layer (7) composed of InxAlyGa1-x-yN where 0?x?1, 0?y?1 and x+y?1. The p-type contact layer (7) adjoins a connection layer (9) composed of a metal, a metal alloy or a transparent conductive oxide, wherein the p-type contact layer (7) has first domains (1) having a Ga-face orientation and second domains (2) having an N-face orientation at an interface with the connection layer (9).
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: December 9, 2014
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Martin Strassburg, Lutz Höppel, Matthias Peter, Ulrich Zehnder, Tetsuya Taki, Andreas Leber, Rainer Butendeich, Thomas Bauer
  • Publication number: 20140183594
    Abstract: A radiation-emitting semiconductor chip having a semiconductor layer sequence based on a nitride compound semiconductor material and having a pn junction includes a first protective layer having deliberately introduced crystal defects, a second protective layer having a higher doping than the first protective layer, wherein the first protective layer protects the semiconductor chip against electrostatic discharge pulses, an active zone that generates radiation disposed downstream of the first protective layer in a growth direction, wherein during operation of the semiconductor chip, a breakdown behavior of the semiconductor layer sequence in a reverse direction in regions having crystal defects differs from regions without crystal defects, and wherein in the event of electrostatic discharge pulses, electrical charge is dissipated in a homogeneously distributed manner via the regions having crystal defects.
    Type: Application
    Filed: April 26, 2012
    Publication date: July 3, 2014
    Applicant: OSRAM Opto Semiconductors GmbH
    Inventors: Andreas Löffler, Christian Leirer, Rainer Butendeich, Tobias Meyer, Matthias Peter
  • Patent number: 8592840
    Abstract: An optoelectronic semiconductor chip includes an epitaxially grown semiconductor layer sequence based on GaN, InGaN, AlGaN and/or InAlGaN, a p-doped layer sequence, an n-doped layer sequence, an active zone that generates an electromagnetic radiation and is situated between the p-doped layer sequence and the n-doped layer sequence, and at least one AlxGa1-xN-based intermediate layer where 0<x?1, which is situated at a same side of the active zone as the n-doped layer sequence.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: November 26, 2013
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Matthias Peter, Tobias Meyer, Nikolaus Gmeinwieser, Tetsuya Taki, Hans-Jürgen Lugauer, Alexander Walter
  • Patent number: 8585246
    Abstract: An optoelectronic module for emitting monochromatic radiation in the visible wavelength range is specified. The module has a plurality of light emitting diode chips which generate UV radiation. The UV radiation is converted into light in the visible range, for example, into green light, by a wavelength converter. The coupling-out of light from the module is optimized by the use of two selectively reflecting and transmitting filters. This module can be used as a light source in a projection apparatus.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: November 19, 2013
    Assignee: OSRAM Optosemiconductors GmbH
    Inventors: Kirstin Petersen, Stefan Grötsch, Stephan Miller, Günter Spath, Norbert Linder, Dominik Eisert, Matthias Peter
  • Patent number: 8581236
    Abstract: An electrically pumped optoelectronic semiconductor chip includes at least two radiation-active quantum wells comprising InGaN or consisting thereof. The optoelectronic semiconductor chip includes at least two cover layers which include AlGaN or consist thereof. Each of the cover layers is assigned to precisely one of the radiation-active quantum wells. The cover layers are each located on a p-side of the associated radiation-active quantum well. The distance between the radiation-active quantum well and the associated cover layer is at most 1.5 nm.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: November 12, 2013
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Matthias Peter, Tobias Meyer, Jürgen Off, Tetsuya Taki, Joachim Hertkorn, Matthias Sabathil, Ansgar Laubsch, Andreas Biebersdorf
  • Publication number: 20130107546
    Abstract: A light having a lamp housing (8) having a receptacle (6), which receptacle is adapted for receiving a socket (2) for a halogen pin-base lamp (1), wherein a heat sink (102) having thermal contact with the lamp housing (8), and on which an LED (101) is fastened, is at least sectionally received in the receptacle (6).
    Type: Application
    Filed: June 29, 2011
    Publication date: May 2, 2013
    Inventor: Matthias Peter
  • Patent number: 8410507
    Abstract: A luminous means (1) including at least one optoelectronic semiconductor device (2) which emits electromagnetic radiation during operation at at least one first wavelength (L1) and at at least one second wavelength (L2), wherein the first wavelength (L1) and the second wavelength (L2) differ from one another and are below 500 nm, in particular between 200 nm and 500 nm. Furthermore, the luminous means (1) includes at least one conversion means (3) which converts the first wavelength (L1) at least partly into radiation having a different frequency. The radiation spectrum emitted by the luminous means (1) during operation is metameric with respect to a black body spectrum. Such a luminous means makes it possible to choose the first wavelength and the second wavelength in such a way that a high color rendering quality and a high efficiency of the luminous means can be realized simultaneously.
    Type: Grant
    Filed: August 11, 2009
    Date of Patent: April 2, 2013
    Assignee: OSRAM Opto SEmiconductors GmbH
    Inventors: Peter Stauss, Reiner Windisch, Frank Baumann, Matthias Peter
  • Patent number: 8390004
    Abstract: A light-emitting structure includes a p-doped region for injecting holes and an n-doped region for injecting electrons. At least one InGaN quantum well of a first type and at least one InGaN quantum well of a second type are arranged between the n-doped region and the p-doped region. The InGaN quantum well of the second type has a higher indium content than the InGaN quantum well of the first type.
    Type: Grant
    Filed: August 25, 2008
    Date of Patent: March 5, 2013
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Adrian Stefan Avramescu, Hans-Juergen Lugauer, Matthias Peter, Stephan Miller
  • Publication number: 20120319126
    Abstract: An optoelectronic semiconductor chip has a first semiconductor layer sequence which comprises a multiplicity of microdiodes, and a second semiconductor layer sequence which comprises an active region the first semiconductor layer sequence and the second semiconductor layer sequence are based on a nitride compound semiconductor material, the first semiconductor layer sequence is before the first semiconductor layer sequence in the direction of growth, and the microdiodes form an ESD protection for the active region.
    Type: Application
    Filed: December 23, 2010
    Publication date: December 20, 2012
    Applicant: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Rainer Butendeich, Alexander Walter, Matthias Peter, Tobias Meyer, Tetsuya Taki, Hubert Maiwald
  • Publication number: 20120313138
    Abstract: An optoelectronic semiconductor chip includes an epitaxially grown semiconductor layer sequence based on GaN, InGaN, AlGaN and/or InAlGaN, a p-doped layer sequence, an n-doped layer sequence, an active zone that generates an electromagnetic radiation and is situated between the p-doped layer sequence and the n-doped layer sequence, and at least one AlxGa 1-xN-based intermediate layer where 0<x?1, which is situated at a same side of the active zone as the n-doped layer sequence.
    Type: Application
    Filed: December 20, 2010
    Publication date: December 13, 2012
    Applicant: OSRAM Opto Semiconductors GmbH
    Inventors: Matthias Peter, Tobias Meyer, Nikolaus Gmeinwieser, Tetsuya Taki, Hans-Jürgen Lugauer, Alexander Walter
  • Patent number: 8330174
    Abstract: An LED having a radiation-emitting active layer (7), an n-type contact (10), a p-type contact (9) and a current spreading layer (4) is specified. The current spreading layer (4) is arranged between the active layer (7) and the n-type contact (10). Furthermore, the current spreading layer (4) has a multiply repeating layer sequence having at least one n-doped layer (44), an undoped layer (42) and a layer composed of AlxGa1-xN (43), where 0?x?1. The layer composed of AlxGa1-xN (43) has a concentration gradient of the Al content.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: December 11, 2012
    Assignee: Osram Opto Semiconductors GmbH
    Inventors: Matthias Sabathil, Matthias Peter
  • Publication number: 20120298951
    Abstract: An optoelectronic semiconductor body is provided, which contains a semiconductor material which is composed of a first component and a second component different from the first component. The semiconductor body comprises a quantum well structure, which is arranged between an n-conducting layer (1) and a p-conducting layer (5).
    Type: Application
    Filed: July 22, 2010
    Publication date: November 29, 2012
    Applicant: OSRAM Opto Semiconductors GmbH
    Inventors: Tobias Meyer, Matthias Peter, Rainer Butendeich, Tetsuya Taki, Juergen Off, Alexander Walter
  • Publication number: 20120298964
    Abstract: A semiconductor chip includes a semiconductor body with a semiconductor layer sequence. An active region intended for generating radiation is arranged between an n-conductive multilayer structure and a p-conductive semiconductor layer. A doping profile is formed in the n-conductive multilayer structure which includes at least one doping peak.
    Type: Application
    Filed: December 27, 2010
    Publication date: November 29, 2012
    Applicant: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Matthias Peter, Tobias Meyer, Alexander Walter, Tetsuya Taki, Juergen Off, Rainer Butendeich, Joachim Hertkorn
  • Patent number: 8314415
    Abstract: A radiation-emitting semiconductor body includes a contact layer and an active zone. The semiconductor body has a tunnel junction arranged between the contact layer and the active zone. The active zone has a multi-quantum well structure containing at least two active layers that emit electromagnetic radiation when an operating current is impressed into the semiconductor body.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: November 20, 2012
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Martin Strassburg, Lutz Hoeppel, Matthias Sabathil, Matthias Peter, Uwe Strauss
  • Publication number: 20120280207
    Abstract: An optoelectronic semiconductor chip comprises the following sequence of regions in a growth direction (c) of the semiconductor chip (20): a p doped barrier layer (1) for an active region (2), the active region (2), which is suitable for generating electromagnetic radiation, the active region being based on a hexagonal compound semiconductor, and an n doped barrier layer (3) for the active region (2). Also disclosed are a component comprising such a semiconductor chip, and to a method for producing such a semiconductor chip.
    Type: Application
    Filed: July 11, 2012
    Publication date: November 8, 2012
    Applicant: OSRAM Opto Semiconductors GmbH
    Inventors: Adrian AVRAMESCU, Volker Härle, Lutz Höppel, Matthias Peter, Matthias Sabathil, Uwe Strauss
  • Publication number: 20120161103
    Abstract: An electrically pumped optoelectronic semiconductor chip includes at least two radiation-active quantum wells comprising InGaN or consisting thereof. The optoelectronic semiconductor chip includes at least two cover layers which include AlGaN or consist thereof. Each of the cover layers is assigned to precisely one of the radiation-active quantum wells. The cover layers are each located on a p-side of the associated radiation-active quantum well. The distance between the radiation-active quantum well and the associated cover layer is at most 1.5 nm.
    Type: Application
    Filed: June 30, 2010
    Publication date: June 28, 2012
    Applicant: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Matthias Peter, Tobias Meyer, Jürgen Off, Tetsuya Taki, Joachim Hertkorn, Matthias Sabathil, Ansgar Laubsch, Andreas Biebersdorf
  • Patent number: 8173991
    Abstract: An optoelectronic semiconductor chip is specified, which has an active zone (20) containing a multi quantum well structure provided for generating electromagnetic radiation, which comprises a plurality of successive quantum well layers (210, 220, 230). The multi quantum well structure comprises at least one first quantum well layer (210), which is n-conductively doped and which is arranged between two n-conductively doped barrier layers (250) adjoining the first quantum well layer. It comprises a second quantum well layer (220), which is undoped and is arranged between two barrier layers (250, 260) adjoining the second quantum well layer, of which one is n-conductively doped and the other is undoped. In addition, the multi quantum well structure comprises at least one third quantum well layer (230), which is undoped and which is arranged between two undoped barrier layers (260) adjoining the third quantum well layer.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: May 8, 2012
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Peter Stauss, Matthias Peter, Alexander Walter
  • Publication number: 20110316028
    Abstract: An optoelectronic semiconductor component comprising a semiconductor layer sequence (3) based on a nitride compound semiconductor and containing an n-doped region (4), a p-doped region (8) and an active zone (5) arranged between the n-doped region (4) and the p-doped region (8) is specified. The p-doped region (8) comprises a p-type contact layer (7) composed of InxAlyGa1-x-yN where 0?x?1, 0?y?1 and x+y?1. The p-type contact layer (7) adjoins a connection layer (9) composed of a metal, a metal alloy or a transparent conductive oxide, wherein the p-type contact layer (7) has first domains (1) having a Ga-face orientation and second domains (2) having an N-face orientation at an interface with the connection layer (9).
    Type: Application
    Filed: September 16, 2009
    Publication date: December 29, 2011
    Applicant: OSRAM Opto Semiconductors GmbH
    Inventors: Martin Strassburg, Lutz Hoeppel, Matthias Peter, Ulrich Zehnder, Tetsuya Taki, Andreas Leber, Rainer Butendeich, Thomas Bauer
  • Publication number: 20110248295
    Abstract: In at least one embodiment of the luminous means (1), the latter comprises at least one optoelectronic semiconductor device (2) which emits electromagnetic radiation during operation at at least one first wavelength (L1) and at least one second wavelength (L2), wherein the first wavelength (L1) and the second wavelength (L2) differ from one another and are below 500 nm, in particular between 200 nm and 500 nm. Furthermore, the luminous means (1) comprises at least one conversion means (3) which converts the first wavelength (L1) at least partly into radiation having a different frequency. The radiation spectrum emitted by the luminous means (1) during operation is metameric with respect to a black body spectrum. Such a luminous means makes it possible to choose the first wavelength and the second wavelength in such a way that a high color rendering quality and a high efficiency of the luminous means can be realized simultaneously.
    Type: Application
    Filed: August 11, 2009
    Publication date: October 13, 2011
    Applicant: OSRAM Opto Semiconductors GmbH
    Inventors: Peter Stauss, Reiner Windisch, Frank Baumann, Matthias Peter