Patents by Inventor Mei-Sheng Zhou

Mei-Sheng Zhou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6875285
    Abstract: System and method for reducing damage to a semiconductor substrate when using cleaning fluids at elevated pressures to clean the semiconductor substrates. A preferred embodiment comprises applying the cleaning fluid at a first pressure for a first time period, wherein the first pressure is relatively low, and then increasing the pressure of the cleaning fluid to a pressure level that can effectively clean the semiconductor substrate and maintaining the pressure level for a second time period. The application of the cleaning fluid at the relatively low initial pressure acts as a temporary filler and creates a buffer of the cleaning fluid on the semiconductor substrate and helps to dampen the impact of the subsequent high pressure application of the cleaning fluid on the semiconductor substrate.
    Type: Grant
    Filed: April 24, 2003
    Date of Patent: April 5, 2005
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ching-Ya Wang, Ping Chuang, Yu-Liang Lin, Mei-Sheng Zhou, Henry Lo
  • Publication number: 20050016467
    Abstract: A system and method which is capable of compensating for unintended elevations in process temperatures induced in a substrate during a semiconductor fabrication process in order to reduce or eliminate disparities in critical dimensions of device features. The system may be a plasma etching system comprising a process chamber containing an electrostatic chuck (ESC) for supporting a wafer substrate. A chiller outside the process chamber includes a main coolant chamber, which contains a main coolant fluid, as well as an compensation coolant chamber, which contains an compensation coolant fluid. A main circulation loop normally circulates the main coolant fluid from the main coolant chamber through the electrostatic chuck to maintain the chuck at a desired set point temperature.
    Type: Application
    Filed: July 24, 2003
    Publication date: January 27, 2005
    Inventors: Yi-Li Hsiao, Mei-Sheng Zhou, Chin-Hsin Peng, Chien-Ling Huang, Tse-Yi Chen, Chun-Yi Lee, Hsueh-Chang Wu
  • Patent number: 6846899
    Abstract: The present invention relates to poly(arylene ethers) used as low k dielectric layers in electronic applications and articles containing such poly(arylene ethers) comprising the structure: wherein n=5 to 10000 and monovalent Ar1 and divalent Ar2 are selected from a group of heteroaromatic compounds that incorporate O, N, Se, S, or Te or combinations of the aforesaid elements, including but not limited to:
    Type: Grant
    Filed: October 1, 2002
    Date of Patent: January 25, 2005
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Christopher Lim, Siu Choon Ng, Hardy Chan, Simon Chooi, Mei Sheng Zhou
  • Patent number: 6841441
    Abstract: A method of fabricating first and second gates comprising the following steps. A substrate having a gate dielectric layer formed thereover is provided. The substrate having a first gate region and a second gate region. A thin first gate layer is formed over the gate dielectric layer. The thin first gate layer within the second gate region is masked to expose a portion of the thin first gate layer within the first gate region. The exposed portion of the thin first gate layer is converted to a thin third gate layer portion. A second gate layer is formed over the thin first and third gate layer portions. The second gate layer and the first and third gate layer portions are patterned to form a first gate within first gate region and a second gate within second gate region.
    Type: Grant
    Filed: January 8, 2003
    Date of Patent: January 11, 2005
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Chew Hoe Ang, Eng-Hua Lim, Randall Cher Liang Cha, Jia Zhen Zheng, Elgin Quek, Mei-Sheng Zhou, Daniel Yen
  • Publication number: 20040266155
    Abstract: A method of fabricating an ultra-small semiconductor structure comprising the following steps. A substrate having a lower dielectric layer and an overlying upper dielectric layer formed thereover is provided. Using a lithography process having a lithography limit, the upper dielectric layer is patterned to form a first opening exposing a portion of the lower dielectric layer. The first opening having exposed side walls and a width equal to the lithography limit. Sidewall spacers having a lower width are formed over the exposed side walls of the first opening. Using the sidewall spacers as masks, the lower dielectric layer is patterned to form a lower opening having a width less than the first opening width. The patterned upper dielectric layer is removed. An ultra-small semiconductor structure is formed within the lower opening. The ultra-small semiconductor structure having a width equal to the lithography limit minus twice the lower width of the sidewall spacer.
    Type: Application
    Filed: June 30, 2003
    Publication date: December 30, 2004
    Applicant: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Chew Hoe Ang, Eng Hua Lim, Randall Cher Liang Cha, Jia Zhen Zheng, Elgin Quek, Mei Sheng Zhou, Daniel Yen
  • Patent number: 6835989
    Abstract: Methods for forming dual-metal gate CMOS transistors are described. An NMOS and a PMOS active area of a semiconductor substrate are separated by isolation regions. A metal layer is deposited over a gate dielectric layer in each active area. Oxygen ions are implanted into the metal layer in one active area to form an implanted metal layer which is oxidized to form a metal oxide layer. Thereafter, the metal layer and the metal oxide layer are patterned to form a metal gate in one active area and a metal oxide gate in the other active area wherein the active area having the gate with the higher work function is the PMOS active area. Alternatively, both gates may be metal oxide gates wherein the oxide concentrations of the two gates differ. Alternatively, a dummy gate may be formed in each of the active areas and covered with a dielectric layer. The dielectric layer is planarized thereby exposing the dummy gates. The dummy gates are removed leaving gate openings to the semiconductor substrate.
    Type: Grant
    Filed: December 16, 2003
    Date of Patent: December 28, 2004
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Wenhe Lin, Mei-Sheng Zhou, Kin Leong Pey, Simon Chooi
  • Patent number: 6828082
    Abstract: A method of forming small features, comprising the following steps. A substrate having a dielectric layer formed thereover is provided. A spacing layer is formed over the dielectric layer. The spacing layer has a thickness equal to the thickness of the small feature to be formed. A patterned, re-flowable masking layer is formed over the spacing layer. The masking layer having a first opening with a width “L”. The patterned, re-flowable masking layer is re-flowed to form a patterned, re-flowed masking layer having a re-flowed first opening with a lower width “1”. The re-flowed first opening lower width “1” being less than the pre-reflowed first opening width “L”. The spacing layer is etched down to the dielectric layer using the patterned, re-flowed masking layer as a mask to form a second opening within the etched spacing layer having a width equal to the re-flowed first opening lower width “1”. Removing the patterned, re-flowed masking layer.
    Type: Grant
    Filed: February 8, 2002
    Date of Patent: December 7, 2004
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Chew-Hoe Ang, Eng Hua Lim, Randall Cha, Jia-Zhen Zheng, Elgin Quek, Mei-Sheng Zhou, Daniel Yen
  • Publication number: 20040227247
    Abstract: Method and product for forming a dual damascene interconnect structure, wherein depositing a copper sulfide interface layer as sidewalls to the opening deters migration or diffusing of copper ions into the dielectric material.
    Type: Application
    Filed: November 21, 2003
    Publication date: November 18, 2004
    Applicant: CHARTERED SEMICONDUCTOR MANFACTURING LTD.
    Inventors: Simon Chooi, Yakub Aliyu, Mei Sheng Zhou, John Leonard Sudijono, Subbash Gupta, Sudipto Ranendra Roy, Paul Kwok Keung Ho, Yi Xu
  • Patent number: 6813796
    Abstract: A new apparatus is provided that can be applied to clean outer edges of semiconductor substrates. Under the first embodiment of the invention, a brush is mounted on the surface of the substrate around the periphery of the substrate, chemicals are fed to the surface that is being cleaned by means of a hollow core on which the cleaning brush is mounted. The surface that is being cleaned rotates at a relatively high speed thereby causing the chemicals that are deposited on this surface (by the brush) to remain in the edge of the surface. Under the second embodiment of the invention, a porous roller is mounted between a chemical reservoir and the surface that is being cleaned, the surface that is being cleaned rotates at a relatively high speed. The chemicals that are deposited by the interfacing porous roller onto the surface that is being cleaned therefore remain at the edge of this surface thereby causing optimum cleaning action of the edge of the surface.
    Type: Grant
    Filed: February 3, 2003
    Date of Patent: November 9, 2004
    Assignee: Chartered Semiconductor
    Inventors: Sudipto Ranendra Roy, Subhash Gupta, Simon Chooi, Xu Yi, Yakub Aliyu, Mei Sheng Zhou, John Leonard Sudijono, Paul Kwok Keung Ho
  • Publication number: 20040217429
    Abstract: Methods for forming dual-metal gate CMOS transistors are described. An NMOS and a PMOS active area of a semiconductor substrate are separated by isolation regions. A metal layer is deposited over a gate dielectric layer in each active area. Silicon ions are implanted into the metal layer in one active area to form an implanted metal layer which is silicided to form a metal silicide layer. Thereafter, the metal layer and the metal silicide layer are patterned to form a metal gate in one active area and a metal silicide gate in the other active area wherein the active area having the gate with the higher work function is the PMOS active area. Alternatively, both gates may be metal silicide gates wherein the silicon concentrations of the two gates differ. Alternatively, a dummy gate may be formed in each of the active areas and covered with a dielectric layer. The dielectric layer is planarized thereby exposing the dummy gates. The dummy gates are removed leaving gate openings to the semiconductor substrate.
    Type: Application
    Filed: May 25, 2004
    Publication date: November 4, 2004
    Applicant: CHARTERED SEMICONDUCTOR MANUFACTURING LTD.
    Inventors: Wenhe Lin, Mei-Sheng Zhou, Kin Leong Pey, Simon Chooi
  • Publication number: 20040211440
    Abstract: System and method for reducing damage to a semiconductor substrate when using cleaning fluids at elevated pressures to clean the semiconductor substrates. A preferred embodiment comprises applying the cleaning fluid at a first pressure for a first time period, wherein the first pressure is relatively low, and then increasing the pressure of the cleaning fluid to a pressure level that can effectively clean the semiconductor substrate and maintaining the pressure level for a second time period. The application of the cleaning fluid at the relatively low initial pressure acts as a temporary filler and creates a buffer of the cleaning fluid on the semiconductor substrate and helps to dampen the impact of the subsequent high pressure application of the cleaning fluid on the semiconductor substrate.
    Type: Application
    Filed: April 24, 2003
    Publication date: October 28, 2004
    Inventors: Ching-Ya Wang, Ping Chuang, Yu-Liang Lin, Mei-Sheng Zhou, Henry Lo
  • Publication number: 20040132296
    Abstract: Methods for forming dual-metal gate CMOS transistors are described. An NMOS and a PMOS active area of a semiconductor substrate are separated by isolation regions. A metal layer is deposited over a gate dielectric layer in each active area. Oxygen ions are implanted into the metal layer in one active area to form an implanted metal layer which is oxidized to form a metal oxide layer. Thereafter, the metal layer and the metal oxide layer are patterned to form a metal gate in one active area and a metal oxide gate in the other active area wherein the active area having the gate with the higher work function is the PMOS active area. Alternatively, both gates may be metal oxide gates wherein the oxide concentrations of the two gates differ. Alternatively, a dummy gate may be formed in each of the active areas and covered with a dielectric layer. The dielectric layer is planarized thereby exposing the dummy gates. The dummy gates are removed leaving gate openings to the semiconductor substrate.
    Type: Application
    Filed: December 16, 2003
    Publication date: July 8, 2004
    Applicant: CHARTERED SEMICONDUCTOR MANUFACTURING LTD.
    Inventors: Wenhe Lin, Mei-Sheng Zhou, Kin Leong Pey, Simon Chooi
  • Publication number: 20040132271
    Abstract: A method of fabricating first and second gates comprising the following steps. A substrate having a gate dielectric layer formed thereover is provided. The substrate having a first gate region and a second gate region. A thin first gate layer is formed over the gate dielectric layer. The thin first gate layer within the second gate region is masked to expose a portion of the thin first gate layer within the first gate region. The exposed portion of the thin first gate layer is converted to a thin third gate layer portion. A second gate layer is formed over the thin first and third gate layer portions. The second gate layer and the first and third gate layer portions are patterned to form a first gate within first gate region and a second gate within second gate region.
    Type: Application
    Filed: January 8, 2003
    Publication date: July 8, 2004
    Applicant: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Chew Hoe Ang, Eng-Hua Lim, Randall Cher Liang Cha, Jia Zhen Zheng, Elgin Quek, Mei-Sheng Zhou, Daniel Yen
  • Publication number: 20040132239
    Abstract: Methods for forming dual-metal gate CMOS transistors are described. An NMOS and a PMOS active area of a semiconductor substrate are separated by isolation regions. A metal layer is deposited over a gate dielectric layer in each active area. Oxygen ions are implanted into the metal layer in one active area to form an implanted metal layer which is oxidized to form a metal oxide layer. Thereafter, the metal layer and the metal oxide layer are patterned to form a metal gate in one active area and a metal oxide gate in the other active area wherein the active area having the gate with the higher work function is the PMOS active area. Alternatively, both gates may be metal oxide gates wherein the oxide concentrations of the two gates differ. Alternatively, a dummy gate may be formed in each of the active areas and covered with a dielectric layer. The dielectric layer is planarized thereby exposing the dummy gates. The dummy gates are removed leaving gate openings to the semiconductor substrate.
    Type: Application
    Filed: December 16, 2003
    Publication date: July 8, 2004
    Applicant: CHARTERED SEMICONDUCTOR MANUFACTURING LTD.
    Inventors: Wenhe Lin, Mei-Sheng Zhou, Kin Leong Pey, Simon Chooi
  • Patent number: 6750519
    Abstract: Methods for forming dual-metal gate CMOS transistors are described. An NMOS and a PMOS active area of a semiconductor substrate are separated by isolation regions. A metal layer is deposited over a gate dielectric layer in each active area. Silicon ions are implanted into the metal layer in one active area to form an implanted metal layer which is silicided to form a metal silicide layer. Thereafter, the metal layer and the metal silicide layer are patterned to form a metal gate in one active area and a metal silicide gate in the other active area wherein the active area having the gate with the higher work function is the PMOS active area. Alternatively, both gates may be metal silicide gates wherein the silicon concentrations of the two gates differ. Alternatively, a dummy gate may be formed in each of the active areas and covered with a dielectric layer. The dielectric layer is planarized thereby exposing the dummy gates. The dummy gates are removed leaving gate openings to the semiconductor substrate.
    Type: Grant
    Filed: October 8, 2002
    Date of Patent: June 15, 2004
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Wenhe Lin, Mei-Sheng Zhou, Kin Leong Pey, Simon Chooi
  • Patent number: 6740580
    Abstract: A method to form copper interconnects is described. The method may be used to form single or dual damascene interconnects. The addition of an aluminum barrier layer to the conventional barrier layer creates a superior barrier to copper diffusion. A substrate layer is provided. A dielectric layer is deposited overlying the substrate layer. The dielectric layer patterned to form interconnect trenches. An optional titanium adhesion layer may be deposited. An aluminum barrier layer is deposited overlying the interior surfaces of the trenches. A second barrier layer, comprising for instance titanium and titanium nitride, is deposited overlying the aluminum barrier layer. A copper layer is deposited overlying the second barrier layer and filling the interconnect trenches. The copper layer, the second barrier layer, and the aluminum barrier layer are polished down to the top surface of the dielectric layer to define the copper interconnects, and complete the fabrication of the integrated circuit device.
    Type: Grant
    Filed: September 3, 1999
    Date of Patent: May 25, 2004
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Subhash Gupta, Chyi S. Chern, Mei Sheng Zhou
  • Patent number: 6730591
    Abstract: A method of forming interconnect structures in a semiconductor device, comprising the following steps. A semiconductor structure is provided. In the first embodiment, at least one metal line is formed over the semiconductor structure. A silicon-rich carbide barrier layer is formed over the metal line and semiconductor structure. Finally, a dielectric layer, that may be fluorinated, is formed over the silicon-rich carbide layer. In the second embodiment, at least one fluorinated dielectric layer, that may be fluorinated, is formed over the semiconductor structure. The dielectric layer is patterned to form an opening therein. A silicon-rich carbide barrier layer is formed within the opening. A metallization layer is deposited over the structure, filling the silicon-rich carbide barrier layer lined opening. Finally, the metallization layer may be planarized to form a planarized metal structure within the silicon-rich carbide barrier layer lined opening.
    Type: Grant
    Filed: July 1, 2002
    Date of Patent: May 4, 2004
    Assignees: Chartered Semiconductor Manufactoring Ltd., Institute of Microelectronics
    Inventors: Licheng Han, Xu Yi, Simon Chooi, Mei Sheng Zhou, Joseph Zhifeng Xie
  • Publication number: 20040082169
    Abstract: This invention relates to a method of fabrication used for semiconductor integrated circuit devices, and more specifically to the formation of single or dual damascene interconnects using a barrier metal layer of WNx or TaNx, deposited by plasma enhanced chemical vapor deposition (PECVD) using metal carbonyl precursors. By using a chemical vapor deposition (CVD) process with these alternate carbonyl precursors, many of the problems are solved, i.e., conformal coverage, gas phase particle generation, and incorporation of halogens or carbon into the film.
    Type: Application
    Filed: October 29, 2002
    Publication date: April 29, 2004
    Applicant: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Simon Chooi, Mei Sheng Zhou, Subhash Gupta
  • Patent number: 6720204
    Abstract: A method of bonding a wire to a metal bonding pad, comprising the following steps. A semiconductor die structure having an exposed metal bonding pad within a chamber is provided. The bonding pad has an upper surface. A hydrogen-plasma is produced within the chamber from a plasma source. The metal bonding pad is pre-cleaned and passivated with the hydrogen-plasma to remove any metal oxide formed on the metal bonding pad upper surface. A wire is then bonded to the passivated metal bonding pad.
    Type: Grant
    Filed: April 11, 2002
    Date of Patent: April 13, 2004
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: John Leonard Sudijono, Yakub Aliyu, Mei Sheng Zhou, Simon Chooi, Subhash Gupta, Sudipto Ranendra Roy, Paul Kwok Keung Ho, Yi Xu
  • Publication number: 20040068082
    Abstract: The present invention relates to poly(arylene ethers) used as low k dielectric layers in electronic applications and articles containing such poly(arylene ethers) comprising the structure: 1
    Type: Application
    Filed: October 1, 2002
    Publication date: April 8, 2004
    Applicant: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Christopher Lim, Siu Choon Ng, Hardy Chan, Simon Chooi, Mei Sheng Zhou