Patents by Inventor Meihua Shen

Meihua Shen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11832533
    Abstract: Methods and apparatuses for forming an encapsulation bilayer over a chalcogenide material on a semiconductor substrate are provided. Methods involve forming a bilayer including a barrier layer directly on chalcogenide material deposited using pulsed plasma plasma-enhanced chemical vapor deposition (PP-PECVD) and an encapsulation layer over the barrier layer deposited using plasma-enhanced atomic layer deposition (PEALD). In various embodiments, the barrier layer is formed using a halogen-free silicon precursor and the encapsulation layer deposited by PEALD is formed using a halogen-containing silicon precursor and a hydrogen-free nitrogen-containing reactant.
    Type: Grant
    Filed: December 20, 2021
    Date of Patent: November 28, 2023
    Assignee: Lam Research Corporation
    Inventors: James Samuel Sims, Andrew John McKerrow, Meihua Shen, Thorsten Lill, Shane Tang, Kathryn Merced Kelchner, John Hoang, Alexander Dulkin, Danna Qian, Vikrant Rai
  • Patent number: 11792987
    Abstract: A three-dimensional (3D) memory structure includes memory cells and a plurality of oxide layers and a plurality of word line layers. The plurality of oxide layers and the plurality of word line layers are alternately stacked in a first direction. A plurality of double channel holes extend through the plurality of oxide layers and the plurality of word line layers in the first direction. The plurality of double channel holes have a peanut-shaped cross-section in a second direction that is transverse to the first direction.
    Type: Grant
    Filed: October 22, 2019
    Date of Patent: October 17, 2023
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Thorsten Lill, Meihua Shen, John Hoang, Hui-Jung Wu, Gereng Gunawan, Yang Pan
  • Publication number: 20230143057
    Abstract: Channel material is conformally deposited along sidewalls of one or more etched features of a mold stack in fabricating a three-terminal memory device. The channel material is deposited in recessed regions and non-recessed regions of the one or more etched features. A sacrificial liner is deposited on the channel material. A directional etch removes the sacrificial liner from non-recessed regions of the one or more etched features. An isotropic etch removes the channel material from non-recessed regions of the one or more etched features, leaving the channel material and the sacrificial liner intact in the recessed regions. The sacrificial liner is removed, leaving the channel material intact and isolated with minimal loss of channel material from over-etch.
    Type: Application
    Filed: March 1, 2021
    Publication date: May 11, 2023
    Inventors: John HOANG, Meihua SHEN, Thorsten Bernd LILL, Hui-Jung WU, Aaron Lynn ROUTZAHN, Francis Sloan ROBERTS
  • Patent number: 11488812
    Abstract: In-situ low pressure chamber cleans and gas nozzle apparatus for plasma processing systems employing in-situ deposited chamber coatings. Certain chamber clean embodiments for conductor etch applications include an NF3-based plasma clean performed at pressures below 30 mT to remove in-situ deposited SiOx coatings from interior surfaces of a gas nozzle hole. Embodiments include a gas nozzle with bottom holes dimensioned sufficiently small to reduce or prevent the in-situ deposited chamber coatings from building up a SiOx deposits on interior surfaces of a nozzle hole.
    Type: Grant
    Filed: June 11, 2019
    Date of Patent: November 1, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Xikun Wang, Andrew Nguyen, Changhun Lee, Xiaoming He, Meihua Shen
  • Publication number: 20220115592
    Abstract: Methods and apparatuses for forming an encapsulation bilayer over a chalcogenide material on a semiconductor substrate are provided. Methods involve forming a bilayer including a barrier layer directly on chalcogenide material deposited using pulsed plasma plasma-enhanced chemical vapor deposition (PP-PECVD) and an encapsulation layer over the barrier layer deposited using plasma-enhanced atomic layer deposition (PEALD). In various embodiments, the barrier layer is formed using a halogen-free silicon precursor and the encapsulation layer deposited by PEALD is formed using a halogen-containing silicon precursor and a hydrogen-free nitrogen-containing reactant.
    Type: Application
    Filed: December 20, 2021
    Publication date: April 14, 2022
    Inventors: James Samuel Sims, Andrew John McKerrow, Meihua Shen, Thorsten Lill, Shane Tang, Kathryn Merced Kelchner, John Hoang, Alexander Dulkin, Danna Qian, Vikrant Rai
  • Publication number: 20220051938
    Abstract: Methods for forming patterned multi-layer stacks including a metal-containing layer are provided herein. Methods involve using silicon-containing non-metal materials in a multi-layer stack including one sacrificial layer to be later removed and replaced with metal while maintaining etch contrast to pattern the multi-layer stack and selectively remove the sacrificial layer prior to depositing metal. Methods involve using silicon oxycarbide in lieu of silicon nitride, and a sacrificial non-metal material in lieu of a metal-containing layer, to fabricate the multi-layer stack, pattern the multi-layer stack, selectively remove the sacrificial non-metal material to leave spaces in the stack, and deposit metal-containing material into the spaces. Sacrificial non-metal materials include silicon nitride and doped polysilicon, such as boron-doped silicon.
    Type: Application
    Filed: September 10, 2019
    Publication date: February 17, 2022
    Inventors: Hui-Jung Wu, Bart J. van Schravendijk, Mark Naoshi Kawaguchi, Gereng Gunawan, Jay E. Uglow, Nagraj Shankar, Gowri Channa Kamarthy, Kevin M. McLaughlin, Ananda K. Banerji, Jialing Yang, John Hoang, Aaron Lynn Routzahn, Nathan Musselwhite, Meihua Shen, Thorsten Bernd Lill, Hao Chi, Nicholas Dominic Altieri
  • Patent number: 11239420
    Abstract: Methods and apparatuses for forming an encapsulation bilayer over a chalcogenide material on a semiconductor substrate are provided. Methods involve forming a bilayer including a barrier layer directly on chalcogenide material deposited using pulsed plasma plasma-enhanced chemical vapor deposition (PP-PECVD) and an encapsulation layer over the barrier layer deposited using plasma-enhanced atomic layer deposition (PEALD). In various embodiments, the barrier layer is formed using a halogen-free silicon precursor and the encapsulation layer deposited by PEALD is formed using a halogen-containing silicon precursor and a hydrogen-free nitrogen-containing reactant.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: February 1, 2022
    Assignee: Lam Research Corporation
    Inventors: James Samuel Sims, Andrew John McKerrow, Meihua Shen, Thorsten Lill, Shane Tang, Kathryn Merced Kelchner, John Hoang, Alexander Dulkin, Danna Qian, Vikrant Rai
  • Publication number: 20210391355
    Abstract: A three-dimensional (3D) memory structure includes memory cells and a plurality of oxide layers and a plurality of word line layers. The plurality of oxide layers and the plurality of word line layers are alternately stacked in a first direction. A plurality of double channel holes extend through the plurality of oxide layers and the plurality of word line layers in the first direction. The plurality of double channel holes have a peanut-shaped cross-section in a second direction that is transverse to the first direction.
    Type: Application
    Filed: October 22, 2019
    Publication date: December 16, 2021
    Inventors: Thorsten LILL, Meihua SHEN, John HOANG, Hui-Jung WU, Gereng GUNAWAN, Yang PAN
  • Patent number: 10784086
    Abstract: Methods of etching cobalt on substrates are provided. Some methods involve exposing the substrate to a boron-containing halide gas and an additive, and exposing the substrate to an activation gas and a plasma. Additives improve selectively depositing a thicker layer of a boron-containing halide material on a surface of a mask than on a surface of a metal. Additives include H2, CH4, CF4, NF3, and Cl2. Boron-containing halide gases include BCl3, BBr3, BF3, and BI3. Exposures may be performed in two or more cycles, with variations in durations and/or bias power for each exposure in the two or more cycles.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: September 22, 2020
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Jialing Yang, Baosuo Zhou, Meihua Shen, Thorsten Lill, John Hoang
  • Patent number: 10658161
    Abstract: In-situ low pressure chamber cleans and gas nozzle apparatus for plasma processing systems employing in-situ deposited chamber coatings. Certain chamber clean embodiments for conductor etch applications include an NF3-based plasma clean performed at pressures below 30 mT to remove in-situ deposited SiOx coatings from interior surfaces of a gas nozzle hole. Embodiments include a gas nozzle with bottom holes dimensioned sufficiently small to reduce or prevent the in-situ deposited chamber coatings from building up a SiOx deposits on interior surfaces of a nozzle hole.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: May 19, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Xikun Wang, Andrew Nguyen, Changhun Lee, Xiaoming He, Meihua Shen
  • Publication number: 20200066987
    Abstract: Methods and apparatuses for forming an encapsulation bilayer over a chalcogenide material on a semiconductor substrate are provided. Methods involve forming a bilayer including a barrier layer directly on chalcogenide material deposited using pulsed plasma plasma-enhanced chemical vapor deposition (PP-PECVD) and an encapsulation layer over the barrier layer deposited using plasma-enhanced atomic layer deposition (PEALD). In various embodiments, the barrier layer is formed using a halogen-free silicon precursor and the encapsulation layer deposited by PEALD is formed using a halogen-containing silicon precursor and a hydrogen-free nitrogen-containing reactant.
    Type: Application
    Filed: August 24, 2018
    Publication date: February 27, 2020
    Inventors: James Samuel Sims, Andrew John McKerrow, Meihua Shen, Thorsten Lill, Shane Tang, Kathryn Merced Kelchner, John Hoang, Alexander Dulkin, Danna Qian, Vikrant Rai
  • Publication number: 20190295826
    Abstract: In-situ low pressure chamber cleans and gas nozzle apparatus for plasma processing systems employing in-situ deposited chamber coatings. Certain chamber clean embodiments for conductor etch applications include an NF3-based plasma clean performed at pressures below 30 mT to remove in-situ deposited SiOx coatings from interior surfaces of a gas nozzle hole. Embodiments include a gas nozzle with bottom holes dimensioned sufficiently small to reduce or prevent the in-situ deposited chamber coatings from building up a SiOx deposits on interior surfaces of a nozzle hole.
    Type: Application
    Filed: June 11, 2019
    Publication date: September 26, 2019
    Inventors: Xikun Wang, Andrew Nguyen, Changhun Lee, Xiaoming He, Meihua Shen
  • Patent number: 10304659
    Abstract: Methods of etching and smoothening films by exposing to a halogen-containing plasma and an inert plasma within a bias window in cycles are provided. Methods are suitable for etching and smoothening films of various materials in the semiconductor industry and are also applicable to applications in optics and other industries.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: May 28, 2019
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Keren Jacobs Kanarik, Samantha Tan, Thorsten Lill, Meihua Shen, Yang Pan, Jeffrey Marks, Richard Wise
  • Patent number: 10199235
    Abstract: Methods and techniques for fabricating metal interconnects, lines, or vias by subtractive etching and liner deposition methods are provided. Methods involve depositing a blanket copper layer, removing regions of the blanket copper layer to form a pattern, treating the patterned metal, depositing a copper-dielectric interface material such that the copper-dielectric interface material adheres only to the patterned copper, depositing a dielectric barrier layer on the substrate, and depositing a dielectric bulk layer on the substrate.
    Type: Grant
    Filed: January 18, 2018
    Date of Patent: February 5, 2019
    Assignee: Lam Research Corporation
    Inventors: Hui-Jung Wu, Thomas Joseph Knisley, Nagraj Shankar, Meihua Shen, John Hoang, Prithu Sharma
  • Patent number: 10096487
    Abstract: Provided herein are methods of atomic layer etching (ALE) of metals including tungsten (W) and cobalt (Co). The methods disclosed herein provide precise etch control down to the atomic level, with etching a low as 1 ? to 10 ? per cycle in some embodiments. In some embodiments, directional control is provided without damage to the surface of interest. The methods may include cycles of a modification operation to form a reactive layer, followed by a removal operation to etch only this modified layer. The modification is performed without spontaneously etching the surface of the metal.
    Type: Grant
    Filed: August 17, 2016
    Date of Patent: October 9, 2018
    Assignee: Lam Research Corporation
    Inventors: Wenbing Yang, Samantha Tan, Keren Jacobs Kanarik, Jeffrey Marks, Taeseung Kim, Meihua Shen, Thorsten Lill
  • Publication number: 20180233325
    Abstract: Methods of etching and smoothening films by exposing to a halogen-containing plasma and an inert plasma within a bias window in cycles are provided. Methods are suitable for etching and smoothening films of various materials in the semiconductor industry and are also applicable to applications in optics and other industries.
    Type: Application
    Filed: April 13, 2018
    Publication date: August 16, 2018
    Inventors: Keren Jacobs Kanarik, Samantha Tan, Thorsten Lill, Meihua Shen, Yang Pan, Jeffrey Marks, Richard Wise
  • Publication number: 20180211846
    Abstract: Methods and techniques for fabricating metal interconnects, lines, or vias by subtractive etching and liner deposition methods are provided. Methods involve depositing a blanket copper layer, removing regions of the blanket copper layer to form a pattern, treating the patterned metal, depositing a copper-dielectric interface material such that the copper-dielectric interface material adheres only to the patterned copper, depositing a dielectric barrier layer on the substrate, and depositing a dielectric bulk layer on the substrate.
    Type: Application
    Filed: January 18, 2018
    Publication date: July 26, 2018
    Inventors: Hui-Jung Wu, Thomas Joseph Knisley, Nagraj Shankar, Meihua Shen, John Hoang, Prithu Sharma
  • Publication number: 20180204738
    Abstract: Apparatuses suitable for etching substrates at various pressure regimes are described herein. Apparatuses include a process chamber including a movable pedestal capable of being positioned at a raised position or a lowered position, showerhead, and optional plasma generator. Apparatuses are capable of forming a pressure differential between an upper chamber region and lower chamber region by varying the position of the movable pedestal. Apparatuses also include a sidewall region adjacent to the showerhead such that an adjustable gap is formed between an edge of the movable pedestal and the sidewall region, the distance of which can be varied to form a pressure differential.
    Type: Application
    Filed: March 15, 2018
    Publication date: July 19, 2018
    Inventors: Meihua Shen, Shuogang Huang, Thorsten Lill, Theo Panagopoulos
  • Patent number: 9984858
    Abstract: Methods of etching and smoothening films by exposing to a halogen-containing plasma and an inert plasma within a bias window in cycles are provided. Methods are suitable for etching and smoothening films of various materials in the semiconductor industry and are also applicable to applications in optics and other industries.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: May 29, 2018
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Keren Jacobs Kanarik, Samantha Tan, Thorsten Lill, Meihua Shen, Yang Pan, Jeffrey Marks, Richard Wise
  • Patent number: 9953843
    Abstract: Apparatuses suitable for etching substrates at various pressure regimes are described herein. Apparatuses include a process chamber including a movable pedestal capable of being positioned at a raised position or a lowered position, showerhead, and optional plasma generator. Apparatuses may be suitable for etching non-volatile metals using a treatment while the movable pedestal is in the lowered position and a high pressure exposure to organic vapor while the movable pedestal is in the raised position.
    Type: Grant
    Filed: February 5, 2016
    Date of Patent: April 24, 2018
    Assignee: Lam Research Corporation
    Inventors: Meihua Shen, Shuogang Huang, Thorsten Lill, Theo Panagopoulos