Patents by Inventor Meng-Hung Shen

Meng-Hung Shen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170323832
    Abstract: The present disclosure relates to a method of forming an integrated chip having middle-of-the-line (MOL) structures arranged at an irregular pitch, and an associated method of formation. In some embodiments, the integrated chip has a well region with a plurality of source/drain regions. A plurality of gate structures are arranged over the well region at a regular pitch. A plurality of middle-of-the-line (MOL) structures are laterally interleaved between some of the plurality of gate structures and are arranged over the well region at an irregular pitch having a first pitch that is larger than the regular pitch. Since the MOL structures have an irregular pitch with a first pitch that is larger than the regular pitch, one or more of the plurality of gate structures are spaced apart from a closest gate or MOL structure by a space that reduces parasitic capacitance.
    Type: Application
    Filed: May 6, 2016
    Publication date: November 9, 2017
    Inventors: Hui-Ting Yang, Chih-Ming Lai, Chun-Kuang Chen, Chih-Liang Chen, Charles Chew-Yuen Young, Jiann-Tyng Tzeng, Kam-Tou Sio, Meng-Hung Shen, Ru-Gun Liu, Wei-Cheng Lin
  • Publication number: 20170256484
    Abstract: A semiconductor structure is disclosed that includes a semiconductor structure includes an active area, a first conductive line, a conductive via, a first conductive metal segment coupled to the conductive line through the conductive via, a second conductive metal segment disposed over the active area, and a local conductive segment configured to couple the first conductive metal segment and the second conductive metal segment.
    Type: Application
    Filed: March 1, 2016
    Publication date: September 7, 2017
    Inventors: Meng-Hung SHEN, Chih-Liang CHEN, Charles Chew-Yuen YOUNG, Jiann-Tyng TZENG, Kam-Tou SIO, Wei-Cheng LIN
  • Publication number: 20170040259
    Abstract: A semiconductor device includes a substrate having source and drain regions, and a channel region arranged between the source and drain regions. The device further includes a gate structure over the substrate and adjacent to the channel region. The gate structure includes a gate stack, a spacer on sidewalls of the gate stack, and a conductor over the gate stack. The device further includes a first contact feature over the substrate and electrically connecting to at least one of the source and drain regions. A top surface of the first contact feature is lower than a top surface of the gate structure. The device further includes a first dielectric layer over the first contact feature. A top surface of the first dielectric layer is below or substantially co-planar with the top surface of the gate structure. The conductor at most partially overlaps in plan view with the first dielectric layer.
    Type: Application
    Filed: October 21, 2016
    Publication date: February 9, 2017
    Inventors: Chih-Liang Chen, Chih-Ming Lai, Kam-Tou Sio, Ru-Gun Liu, Meng-Hung Shen, Chun-Hung Liou, Shu-Hui Sung, Charles Chew-Yuen Young
  • Patent number: 9478636
    Abstract: Provided is a semiconductor device and methods of forming the same. The semiconductor device includes a substrate having source/drain regions and a channel region between the source/drain regions; a gate structure over the substrate and adjacent to the channel region; source/drain contacts over the source/drain regions and electrically connecting to the source/drain regions; and a contact protection layer over the source/drain contacts. The gate structure includes a gate stack and a spacer. A top surface of the source/drain contacts is lower than a top surface of the spacer, which is substantially co-planar with a top surface of the contact protection layer. The contact protection layer prevents accidental shorts between the gate stack and the source/drain regions when gate vias are formed over the gate stack. Therefore, gate vias may be formed over any portion of the gate stack, even in areas that overlap the channel region from a top view.
    Type: Grant
    Filed: May 16, 2014
    Date of Patent: October 25, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Liang Chen, Chih-Ming Lai, Kam-Tou Sio, Ru-Gun Liu, Meng-Hung Shen, Chun-Hung Liou, Shu-Hui Sung, Charles Chew-Yuen Young
  • Patent number: 9442510
    Abstract: A clock gating circuit includes a first transistor, a first inverter and a second transistor. A first terminal of the first transistor receives a clock input signal. A second terminal of the first transistor is coupled to a first node. The first transistor adjusts a voltage of the first node to a first voltage based on the clock input signal. The first inverter is coupled to the first node and receives the voltage of the first node, and outputs a clock output signal. A first terminal of the second transistor receives the clock input signal. A second terminal of the second transistor is coupled to the first node and a second node. The second transistor adjusts the voltage of the first node or the second node to the second voltage, based on the clock input signal.
    Type: Grant
    Filed: February 4, 2015
    Date of Patent: September 13, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jiann-Tyng Tzeng, Meng-Hung Shen, Yi-Feng Chen, Charles Chew-Yuen Young
  • Publication number: 20160147252
    Abstract: A clock gating circuit includes a first transistor, a first inverter and a second transistor. A first terminal of the first transistor receives a clock input signal. A second terminal of the first transistor is coupled to a first node. The first transistor adjusts a voltage of the first node to a first voltage based on the clock input signal. The first inverter is coupled to the first node and receives the voltage of the first node, and outputs a clock output signal. A first terminal of the second transistor receives the clock input signal. A second terminal of the second transistor is coupled to the first node and a second node. The second transistor adjusts the voltage of the first node or the second node to the second voltage, based on the clock input signal.
    Type: Application
    Filed: February 4, 2015
    Publication date: May 26, 2016
    Inventors: Jiann-Tyng TZENG, Meng-Hung SHEN, Yi-Feng CHEN, Charles Chew-Yuen YOUNG
  • Publication number: 20160077544
    Abstract: Clock gating circuits may include: a first inverter; a first switch having a first terminal and a second terminal, the first terminal of the first switch coupled to an output of the first inverter; a feedback circuit having an input-output terminal, the input-output terminal of the feedback circuit coupled to the second terminal of the first switch; and a first logic gate having a first input terminal and a second input terminal, the first input terminal coupled to the input-output terminal of the feedback circuit, the second input terminal electrically connected to receive a master clock signal.
    Type: Application
    Filed: September 17, 2014
    Publication date: March 17, 2016
    Inventors: Jiann-Tyng Tzeng, Meng-Hung Shen, Yi-Feng Chen, Charles Chew-Yuen Young
  • Publication number: 20150332962
    Abstract: Provided is a semiconductor device and methods of forming the same. The semiconductor device includes a substrate having source/drain regions and a channel region between the source/drain regions; a gate structure over the substrate and adjacent to the channel region; source/drain contacts over the source/drain regions and electrically connecting to the source/drain regions; and a contact protection layer over the source/drain contacts. The gate structure includes a gate stack and a spacer. A top surface of the source/drain contacts is lower than a top surface of the spacer, which is substantially co-planar with a top surface of the contact protection layer. The contact protection layer prevents accidental shorts between the gate stack and the source/drain regions when gate vias are formed over the gate stack. Therefore, gate vias may be formed over any portion of the gate stack, even in areas that overlap the channel region from a top view.
    Type: Application
    Filed: May 16, 2014
    Publication date: November 19, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Liang Chen, Chih-Ming Lai, Kam-Tou Sio, Ru-Gun Liu, Meng-Hung Shen, Chun-Hung Liou, Shu-Hui Sung, Charles Chew-Yuen Young