Patents by Inventor Meng-Liang Lin

Meng-Liang Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230386984
    Abstract: First redistribution interconnect structures having a respective uniform thickness throughout are formed on a top surface of a first adhesive layer over a first carrier wafer. Redistribution dielectric layers and additional redistribution interconnect structures are formed over the first redistribution interconnect structures to provide at least one redistribution structure. A respective set of one or more semiconductor dies is attached to each of the at least one redistribution structure. The first redistribution interconnect structures are physically exposed by removing the first carrier wafer and the first adhesive layer. Fan-out bump structures are formed on the physically exposed first planar surfaces of the first redistribution interconnect structures.
    Type: Application
    Filed: May 27, 2022
    Publication date: November 30, 2023
    Inventors: Hsien-Wei Chen, Meng-Liang Lin, Ying-Ju Chen, Shin-Puu Jeng
  • Publication number: 20230386956
    Abstract: A semiconductor package and a manufacturing method thereof are provided. The semiconductor package includes at least a circuit substrate, a semiconductor die and a filling material. The circuit substrate has a first surface, a second surface opposite to the first surface and a cavity concave from the first surface. The circuit substrate includes a dielectric material and a metal floor plate embedded in the dielectric material and located below the cavity. A location of the metal floor plate corresponds to a location of the cavity. The metal floor plate is electrically floating and isolated by the dielectric material. The semiconductor die is disposed in the cavity and electrically connected with the circuit substrate. The filling material is disposed between the semiconductor die and the circuit substrate. The filling material fills the cavity and encapsulates the semiconductor die to attach the semiconductor die and the circuit substrate.
    Type: Application
    Filed: August 2, 2023
    Publication date: November 30, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Meng-Liang Lin, Po-Yao Chuang, Te-Chi Wong, Shuo-Mao Chen, Shin-Puu Jeng
  • Publication number: 20230378039
    Abstract: Some implementations herein describe a semiconductor package. The semiconductor package, which may correspond to a high-performance computing semiconductor package, includes an interposer. The interposer includes tapered interconnect structures formed using a laser plug process. The tapered interconnect structures may include a length that is lesser relative to a length of the column-shaped interconnect structures formed using a through-silicon via process. Such a length reduces a thickness of the interposer and reduces a length of electrical connections through the interposer. In this way, a signal integrity may be increased and parasitics of the semiconductor package including the tapered interconnect structures may be reduced to increase a performance of the semiconductor package. Additionally, the reduced thickness of the interposer may reduce an overall thickness of the semiconductor package to save space consumed by the semiconductor package in a computing system.
    Type: Application
    Filed: May 23, 2022
    Publication date: November 23, 2023
    Inventors: Hsien-Wei CHEN, Meng-Liang LIN, Li-Ling LIAO, Shin-Puu JENG
  • Patent number: 11824007
    Abstract: A semiconductor package is fabricated by attaching a first component to a second component. The first component is assembled by forming a first redistribution structure over a substrate. A through via is then formed over the first redistribution structure, and a die is attached to the first redistribution structure active-side down. The second component includes a second redistribution structure, which is then attached to the through via. A molding compound is deposited between the first redistribution structure and the second redistribution structure and further around the sides of the second component.
    Type: Grant
    Filed: March 9, 2022
    Date of Patent: November 21, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Po-Hao Tsai, Po-Yao Chuang, Meng-Liang Lin, Yi-Wen Wu, Shin-Puu Jeng, Techi Wong
  • Publication number: 20230361045
    Abstract: A semiconductor package, which may correspond to a high-performance computing package, includes an integrated circuit die electrically and/or mechanically connected to a top surface of an interposer and a plurality of connection structures electrically and/or mechanically connected to a bottom surface of the interposer. The top surface of the interposer includes a set of test contact structures (e.g., one or more test bumps) that are electrically connected to the integrated circuit die through traces of the interposer. The set of test structures may be contacted by a probe needle to test a quality and/or a reliability of the integrated circuit die, as well as verify that traces of the interposer are functional. The set of test contact structures allows the integrated circuit die and traces of the interposer to be tested without probing the connection structures.
    Type: Application
    Filed: May 3, 2022
    Publication date: November 9, 2023
    Inventors: Hsien-Wei CHEN, Meng-Liang LIN, Shin-Puu JENG
  • Publication number: 20230361016
    Abstract: A semiconductor package, which may correspond to a high-performance computing package, includes an interposer over a substrate. A spacer structure is mounted to a bottom surface of the interposer. The spacer structure is configured to maintain a clearance between a bottom surface of an integrated circuit die mounted to the bottom surface of the interposer and a top surface of the substrate to reduce a likelihood of an interference or collision between the integrated circuit die and the substrate. In this way, a likelihood of damage to the integrated circuit die and/or the substrate is reduced. Additionally, a robustness of an electrical connection between the integrated circuit die and the interposer may increase to improve a reliability and/or a yield of the semiconductor package including the spacer structure.
    Type: Application
    Filed: May 6, 2022
    Publication date: November 9, 2023
    Inventors: Hsien-Wei CHEN, Meng-Liang LIN, Shin-Puu JENG
  • Publication number: 20230361015
    Abstract: A method includes forming an interposer, which includes forming a rigid dielectric layer, and removing portions of the rigid dielectric layer. The method further includes bonding a package component to an interconnect structure, and bonding the interposer to the interconnect structure. A spacer in the interposer has a bottom surface contacting a top surface of the package component, and the spacer includes a feature selected from the group consisting of a metal feature, the rigid dielectric layer, and combinations thereof. A die-saw is performed on the interconnect structure.
    Type: Application
    Filed: July 13, 2023
    Publication date: November 9, 2023
    Inventors: Po-Hao Tsai, Techi Wong, Meng-Wei Chou, Meng-Liang Lin, Po-Yao Chuang, Shin-Puu Jeng
  • Publication number: 20230343765
    Abstract: A method includes forming a first package component, which includes an interposer, and a first die bonded to a first side of the interposer. A second die is bonded to a second side of the interposer. The second die includes a substrate, and a through-via penetrating through the substrate. The method further includes bonding a second package component to the first package component through a first plurality of solder regions. The first package component is further electrically connected to the second package component through the through-via in the second die. The second die is further bonded to the second package component through a second plurality of solder regions.
    Type: Application
    Filed: June 1, 2022
    Publication date: October 26, 2023
    Inventors: Shin-Puu Jeng, Hsien-Wei Chen, Meng-Liang Lin, Ying-Ju Chen, Shuo-Mao Chen
  • Publication number: 20230326819
    Abstract: An embodiment semiconductor package assembly may include an interposer, an integrated passive device electrically coupled to a first side of the interposer, an underfill material portion formed between the integrated passive device and the first side of the interposer, and a dam protruding from the first side of the interposer and configured to constrain a spatial extent of the underfill material portion. The dam may include a first portion extending above a surface of the first side of the interposer and a second portion embedded below the surface of the first side of the interposer. The dam may be formed in a dielectric layer that also includes a component of a redistribution interconnect structure. The dam further be electrically isolated from the redistribution interconnect structure and may be configured to form a connected or disconnected boundary of a two-dimensional region of the first side of the interposer.
    Type: Application
    Filed: April 12, 2022
    Publication date: October 12, 2023
    Inventors: Hsien-Wei CHEN, Meng-Liang Lin, Shin-Puu Jeng
  • Publication number: 20230215792
    Abstract: A semiconductor package and a method of manufacturing the same are provided. The semiconductor package includes a semiconductor die, an encapsulant and a redistribution structure. The encapsulant laterally encapsulates the semiconductor die. The redistribution structure is disposed on the encapsulant and electrically connected with the semiconductor die, wherein the redistribution structure comprises a first conductive via, a first conductive wiring layer and a second conductive via stacked along a stacking direction, the first conductive via has a first terminal surface contacting the first conductive wiring layer, the second conductive via has a second terminal surface contacting the first conductive wiring layer, an area of a first cross section of the first conductive via is greater than an area of the first terminal surface of the first conductive via, and an area of a second cross section of the second conductive via is greater than an area of the second terminal surface of the second conductive via.
    Type: Application
    Filed: March 14, 2023
    Publication date: July 6, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Ting Hung, Meng-Liang Lin, Shin-Puu Jeng, Yi-Wen Wu, Po-Yao Chuang
  • Patent number: 11682599
    Abstract: A method for forming a chip package structure is provided. The method includes disposing a chip over a redistribution structure. The method includes forming a molding layer over the redistribution structure and adjacent to the chip. The method includes partially removing the molding layer to form a trench in the molding layer, and the trench is spaced apart from the chip.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: June 20, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Po-Hao Tsai, Techi Wong, Meng-Wei Chou, Meng-Liang Lin, Po-Yao Chuang, Shin-Puu Jeng
  • Patent number: 11637054
    Abstract: A semiconductor package and a method of manufacturing the same are provided. The semiconductor package includes a semiconductor die, an encapsulant and a redistribution structure. The encapsulant laterally encapsulates the semiconductor die. The redistribution structure is disposed on the encapsulant and electrically connected with the semiconductor die, wherein the redistribution structure comprises a first conductive via, a first conductive wiring layer and a second conductive via stacked along a stacking direction, the first conductive via has a first terminal surface contacting the first conductive wiring layer, the second conductive via has a second terminal surface contacting the first conductive wiring layer, an area of a first cross section of the first conductive via is greater than an area of the first terminal surface of the first conductive via, and an area of a second cross section of the second conductive via is greater than an area of the second terminal surface of the second conductive via.
    Type: Grant
    Filed: September 3, 2020
    Date of Patent: April 25, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Ting Hung, Meng-Liang Lin, Shin-Puu Jeng, Yi-Wen Wu, Po-Yao Chuang
  • Publication number: 20230105359
    Abstract: In an embodiment, a package includes: a first redistribution structure; a first integrated circuit die connected to the first redistribution structure; a ring-shaped substrate surrounding the first integrated circuit die, the ring-shaped substrate connected to the first redistribution structure, the ring-shaped substrate including a core and conductive vias extending through the core; a encapsulant surrounding the ring-shaped substrate and the first integrated circuit die, the encapsulant extending through the ring-shaped substrate; and a second redistribution structure on the encapsulant, the second redistribution structure connected to the first redistribution structure through the conductive vias of the ring-shaped substrate.
    Type: Application
    Filed: December 12, 2022
    Publication date: April 6, 2023
    Inventors: Po-Hao Tsai, Techi Wong, Meng-Wei Chou, Meng-Liang Lin, Po-Yao Chuang, Shin-Puu Jeng
  • Publication number: 20230067914
    Abstract: A semiconductor package and a manufacturing method thereof are provided. The semiconductor package includes at least a circuit substrate, a semiconductor die and a filling material. The circuit substrate has a first surface, a second surface opposite to the first surface and a cavity concave from the first surface. The circuit substrate includes a dielectric material and a metal floor plate embedded in the dielectric material and located below the cavity. A location of the metal floor plate corresponds to a location of the cavity. The metal floor plate is electrically floating and isolated by the dielectric material. The semiconductor die is disposed in the cavity and electrically connected with the circuit substrate. The filling material is disposed between the semiconductor die and the circuit substrate. The filling material fills the cavity and encapsulates the semiconductor die to attach the semiconductor die and the circuit substrate.
    Type: Application
    Filed: August 31, 2021
    Publication date: March 2, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Meng-Liang Lin, Po-Yao Chuang, Te-Chi Wong, Shuo-Mao Chen, Shin-Puu Jeng
  • Publication number: 20230038892
    Abstract: A semiconductor device structure includes a package substrate having a first side and a second side, a first stacking via formed within the package substrate, a second stacking via formed within the package substrate, and a first semiconductor die attached to the first side of the package substrate and electrically coupled to the first stacking via. The semiconductor device structure includes a second semiconductor die attached to the first side of the package substrate and electrically coupled to the second stacking via; and a bridge die attached to the second side of the package substrate and electrically coupled to the first stacking via and the second stacking via through first stacking via, the bridge die, and the second stacking via.
    Type: Application
    Filed: March 11, 2022
    Publication date: February 9, 2023
    Inventors: Hsien-Wei CHEN, Meng-Liang LIN, Shin-Puu JENG
  • Patent number: 11527474
    Abstract: In an embodiment, a package includes: a first redistribution structure; a first integrated circuit die connected to the first redistribution structure; a ring-shaped substrate surrounding the first integrated circuit die, the ring-shaped substrate connected to the first redistribution structure, the ring-shaped substrate including a core and conductive vias extending through the core; a encapsulant surrounding the ring-shaped substrate and the first integrated circuit die, the encapsulant extending through the ring-shaped substrate; and a second redistribution structure on the encapsulant, the second redistribution structure connected to the first redistribution structure through the conductive vias of the ring-shaped substrate.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: December 13, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Po-Hao Tsai, Techi Wong, Meng-Wei Chou, Meng-Liang Lin, Po-Yao Chuang, Shin-Puu Jeng
  • Publication number: 20220367399
    Abstract: A package structure is provided. The package structure includes an interposer substrate including an insulating structure, a conductive pad, a first conducive line, and a first conductive via structure. The package structure includes an electronic device bonded to the conductive pad. The package structure includes a chip structure bonded to the first end portion of the first conductive via structure. The package structure includes a first conductive bump connected between the chip structure and the first end portion of the first conductive via structure. The first end portion protrudes into the first conductive bump and is in direct contact with the first conductive bump.
    Type: Application
    Filed: August 25, 2021
    Publication date: November 17, 2022
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Meng-Liang LIN, Po-Yao CHUANG, Shin-Puu JENG
  • Publication number: 20220359489
    Abstract: Packaged devices and methods of manufacturing the devices are described herein. The packaged devices may be fabricated using heterogeneous devices and asymmetric dual-side molding on a multi-layered redistribution layer (RDL) structure. The packaged devices may be formed with a heterogeneous three-dimensional (3D) Fan-Out System-in-Package (SiP) structure having small profiles and can be formed using a single carrier substrate.
    Type: Application
    Filed: July 21, 2022
    Publication date: November 10, 2022
    Inventors: Yi-Wen Wu, Po-Yao Chuang, Meng-Liang Lin, Techi Wong, Shih-Ting Hung, Po-Hao Tsai, Shin-Puu Jeng
  • Publication number: 20220352085
    Abstract: A package structure is provided. The package structure includes a first redistribution structure and a second redistribution structure over the first redistribution structure. The package structure also includes. The package structure further includes a semiconductor chip between the first redistribution structure and the second redistribution structure. In addition, the package structure includes a protective layer surrounding the semiconductor chip and a conductive structure penetrating through the protective layer. The conductive structure has a solder element and a conductive pillar, the conductive pillar has a first end and a second end, and the first end is between the second end and the solder element. The solder element has a protruding portion extending from an interface between the conductive pillar and the solder element towards the second end. A terminal of the protruding portion is vertically between the first end and the second end.
    Type: Application
    Filed: July 4, 2022
    Publication date: November 3, 2022
    Inventors: Po-Hao TSAI, Hsien-Wen LIU, Shin-Puu JENG, Meng-Liang LIN, Shih-Yung PENG, Shih-Ting HUNG
  • Publication number: 20220344317
    Abstract: Structures and methods of forming fan-out packages are provided. The packages described herein may include a cavity substrate, one or more semiconductor devices located in a cavity of the cavity substrate, and one or more redistribution structures. Embodiments include a cavity preformed in a cavity substrate. Various devices, such as integrated circuit dies, packages, or the like, may be placed in the cavity. Redistribution structures may also be formed.
    Type: Application
    Filed: June 24, 2022
    Publication date: October 27, 2022
    Inventors: Po-Hao Tsai, Techi Wong, Po-Yao Chuang, Shin-Puu Jeng, Meng-Wei Chou, Meng-Liang Lin