Patents by Inventor Michael A. Bryan
Michael A. Bryan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 7437047Abstract: Photosensitive optical materials are used for establishing more versatile approaches for optical device formation. In some embodiments, unpatterned light is used to shift the index-of-refraction of planar optical structures to shift the index-of-refraction of the photosensitive material to a desired value. This approach can be effective to produce cladding material with a selected index-of-refraction. In additional embodiments gradients in index-of-refraction are formed using photosensitive materials. In further embodiments, the photosensitive materials are patterned within the planar optical structure. Irradiation of the photosensitive material can selectively shift the index-of-refraction of the patterned photosensitive material. By patterning the light used to irradiate the patterned photosensitive material, different optical devices can be selectively activated within the optical structure.Type: GrantFiled: April 30, 2007Date of Patent: October 14, 2008Assignee: NeoPhotonics CorporationInventors: Michael A. Bryan, Nobuyuki Kambe
-
Publication number: 20080206963Abstract: A method of forming substrates, e.g., silicon on insulator, silicon on silicon. The method includes providing a donor substrate, e.g., silicon wafer. The method also includes forming a cleave layer on the donor substrate that contains the cleave plane, the plane of eventual separation. In a specific embodiment, the cleave layer comprising silicon germanium. The method also includes forming a device layer (e.g., epitaxial silicon) on the cleave layer. The method also includes introducing particles into the cleave layer to add stress in the cleave layer. The particles within the cleave layer are then redistributed to form a high concentration region of the particles in the vicinity of the cleave plane, where the redistribution of the particles is carried out in a manner substantially free from microbubble or microcavity formation of the particles in the cleave plane. That is, the particles are generally at a low dose, which is defined herein as a lack of microbubble or microcavity formation in the cleave plane.Type: ApplicationFiled: April 18, 2008Publication date: August 28, 2008Applicant: Silicon Genesis CorporationInventors: Francois J. Henley, Michael A. Bryan, William G. En
-
Patent number: 7391940Abstract: Gradient index lenses are described that are integrated within a planar optical structure. The gradient index lens is optically coupled to a planar optical waveguide. In some embodiments, the gradient index lens with variation in index-of-refraction n one dimension is within an optical fiber. The optical fiber includes cladding at least along the edges of the central plane of the gradient index lens. Methods for forming the integrated structures are described. Further optical structures involving the gradient index lenses are also described.Type: GrantFiled: January 12, 2007Date of Patent: June 24, 2008Assignee: NeoPhotonics CorporationInventors: Michael A. Bryan, Elizabeth Anne Nevis
-
Patent number: 7378330Abstract: A method of forming substrates, e.g., silicon on insulator, silicon on silicon. The method includes providing a donor substrate, e.g., silicon wafer. The method also includes forming a cleave layer on the donor substrate that contains the cleave plane, the plane of eventual separation. In a specific embodiment, the cleave layer comprising silicon germanium. The method also includes forming a device layer (e.g., epitaxial silicon) on the cleave layer. The method also includes introducing particles into the cleave layer to add stress in the cleave layer. The particles within the cleave layer are then redistributed to form a high concentration region of the particles in the vicinity of the cleave plane, where the redistribution of the particles is carried out in a manner substantially free from microbubble or microcavity formation of the particles in the cleave plane. That is, the particles are generally at a low dose, which is defined herein as a lack of microbubble or microcavity formation in the cleave plane.Type: GrantFiled: March 28, 2006Date of Patent: May 27, 2008Assignee: Silicon Genesis CorporationInventors: Francois J. Henley, Michael A. Bryan, William G. En
-
Patent number: 7224882Abstract: Photosensitive optical materials are used for establishing more versatile approaches for optical device formation. In some embodiments, unpatterned light is used to shift the index-of-refraction of planar optical structures to shift the index-of-refraction of the photosensitive material to a desired value. This approach can be effective to produce cladding material with a selected index-of-refraction. In additional embodiments gradients in index-of-refraction are formed using, photosensitive materials. In further embodiments, the photosensitive materials are patterned within the planar optical structure. Irradiation of the photosensitive material can selectively shift the index-of-refraction of the patterned photosensitive material. By patterning the light used to irradiate the patterned photosensitive material, different optical devices can be selectively activated within the optical structure.Type: GrantFiled: July 15, 2003Date of Patent: May 29, 2007Assignee: NeoPhotonics CorporationInventors: Michael A. Bryan, Nobuyuki Kambe
-
Patent number: 7164818Abstract: Gradient index lenses are described that are integrated within a planar optical structure. The gradient index lens is optically coupled to a planar optical waveguide. In some embodiments, the gradient index lens with variation in index-of-refraction in one dimension is within an optical fiber. The optical fiber includes cladding at least along the edges of the central plane of the gradient index lens. Methods for forming the integrated structures are described. Further optical structures involving the gradient index lenses are also described.Type: GrantFiled: May 3, 2002Date of Patent: January 16, 2007Assignee: NeoPhontonics CorporationInventors: Michael A. Bryan, Elizabeth Anne Nevis
-
Patent number: 7056808Abstract: A method of forming substrates, e.g., silicon on insulator, silicon on silicon. The method includes providing a donor substrate, e.g., silicon wafer. The method also includes forming a cleave layer on the donor substrate that contains the cleave plane, the plane of eventual separation. In a specific embodiment, the cleave layer comprising silicon germanium. The method also includes forming a device layer (e.g., epitaxial silicon) on the cleave layer. The method also includes introducing particles into the cleave layer to add stress in the cleave layer. The particles within the cleave layer are then redistributed to form a high concentration region of the particles in the vicinity of the cleave plane, where the redistribution of the particles is carried out in a manner substantially free from microbubble or microcavity formation of the particles in the cleave plane. That is, the particles are generally at a low dose, which is defined herein as a lack of microbubble or microcavity formation in the cleave plane.Type: GrantFiled: November 20, 2002Date of Patent: June 6, 2006Assignee: Silicon Genesis CorporationInventors: Francois J. Henley, Michael A. Bryan, William G. En
-
Patent number: 7039264Abstract: Monolithic optical structures include a plurality of layer with each layer having an isolated optical pathway confined within a portion of the layer. The monolithic optical structure can be used as an optical fiber preform. Alternatively or additionally, the monolithic optical structure can include integrated optical circuits within one or more layers of the structure. Monolithic optical structures can be formed by performing multiple passes of a substrate through a flowing particle stream. The deposited particles form an optical material following consolidation. Flexible optical fibers include a plurality of independent light channels extending along the length of the optical fiber. The fibers can be pulled from an appropriate preform.Type: GrantFiled: April 22, 2003Date of Patent: May 2, 2006Assignee: NeoPhotonics CorporationInventors: Michael A. Bryan, Xiangxin Bi
-
Patent number: 6952504Abstract: Three dimensional optical structures are described that can have various integrations between optical devices within and between layers of the optical structure. Optical turning elements can provide optical pathways between layers of optical devices. Methods are described that provide for great versatility on contouring optical materials throughout the optical structure. Various new optical devices are enabled by the improved optical processing approaches.Type: GrantFiled: December 21, 2001Date of Patent: October 4, 2005Assignee: NeoPhotonics CorporationInventors: Xiangxin Bi, Elizabeth Anne Nevis, Ronald J. Mosso, Michael Edward Chapin, Shivkumar Chiruvolu, Sardar Hyat Khan, Sujeet Kumar, Herman Adrian Lopez, Nguyen Tran The Huy, Craig Richard Horne, Michael A. Bryan, Eric Euvrard
-
Patent number: 6917511Abstract: Methods for the production of ceramic chip capacitors include the deposition of at least two layers of electrical conductor and at least one layer of a dielectric between electrical conducting layers. The compositions in the dielectric layer are deposited from a flow in which flowing reactants react to form particles in a reaction driven by light at a light reaction zone. In some embodiments, a plurality of dielectric layers is deposited. Suitable dielectric materials include barium titanate. A collection of barium titanate particles can be formed in the coating process having an average diameter less than about 90 nanometers. Thus, ceramic chip capacitors can be formed with barium titanate particles having an average diameter less than about 90 nanometers.Type: GrantFiled: August 14, 2002Date of Patent: July 12, 2005Assignee: NeoPhotonics CorporationInventor: Michael A. Bryan
-
Patent number: 6788866Abstract: Structures include a substrate with a release layer on the surface of the substrate and a uniform material over the release layer. The release layer generally includes powders or partly sintered powders. In some embodiments the uniform material is an optical material, which can be a glass. The optical material can be mechanically decoupled fro the substrate such that the optical material is stress free. The release layer can function as a transfer layer for transferring the uniform material to another substrate of separating the uniform material to create a freestanding structure. The release layer can be formed by the deposition of a material with a higher sintering temperature than powders used to form the uniform material. In other embodiments, a heating step is performed to preserve the release layer while consolidating powders on top into the uniform material.Type: GrantFiled: August 17, 2001Date of Patent: September 7, 2004Assignee: NanoGram CorporationInventor: Michael A. Bryan
-
Publication number: 20040105163Abstract: Photosensitive optical materials are used for establishing more versatile approaches for optical device formation. In some embodiments, unpatterned light is used to shift the index-of-refraction of planar optical structures to shift the index-of-refraction of the photosensitive material to a desired value. This approach can be effective to produce cladding material with a selected index-of-refraction. In additional embodiments gradients in index-of-refraction are formed using, photosensitive materials. In further embodiments, the photosensitive materials are patterned within the planar optical structure. Irradiation of the photosensitive material can selectively shift the index-of-refraction of the patterned photosensitive material. By patterning the light used to irradiate the patterned photosensitive material, different optical devices can be selectively activated within the optical structure.Type: ApplicationFiled: July 15, 2003Publication date: June 3, 2004Inventors: Michael A. Bryan, Nobuyuki Kambe
-
Publication number: 20030232200Abstract: Monolithic optical structures include a plurality of layer with each layer having an isolated optical pathway confined within a portion of the layer. The monolithic optical structure can be used as an optical fiber preform. Alternatively or additionally, the monolithic optical structure can include integrated optical circuits within one or more layers of the structure. Monolithic optical structures can be formed by performing multiple passes of a substrate through a flowing particle stream. The deposited particles form an optical material following consolidation. Flexible optical fibers include a plurality of independent light channels extending along the length of the optical fiber. The fibers can be pulled from an appropriate preform.Type: ApplicationFiled: April 22, 2003Publication date: December 18, 2003Inventors: Michael A. Bryan, Xiangxin Bi
-
Publication number: 20030124815Abstract: A method of forming substrates, e.g., silicon on insulator, silicon on silicon. The method includes providing a donor substrate, e.g., silicon wafer. The method also includes forming a cleave layer on the donor substrate that contains the cleave plane, the plane of eventual separation. In a specific embodiment, the cleave layer comprising silicon germanium. The method also includes forming a device layer (e.g., epitaxial silicon) on the cleave layer. The method also includes introducing particles into the cleave layer to add stress in the cleave layer. The particles within the cleave layer are then redistributed to form a high concentration region of the particles in the vicinity of the cleave plane, where the redistribution of the particles is carried out in a manner substantially free from microbubble or microcavity formation of the particles in the cleave plane. That is, the particles are generally at a low dose, which is defined herein as a lack of microbubble or microcavity formation in the cleave plane.Type: ApplicationFiled: November 20, 2002Publication date: July 3, 2003Applicant: Silicon Genesis CorporationInventors: Francois J. Henley, Michael A. Bryan, William G. En
-
Publication number: 20030117691Abstract: Three dimensional optical structures are described that can have various integrations between optical devices within and between layers of the optical structure. Optical turning elements can provide optical pathways between layers of optical devices. Methods are described that provide for great versatility on contouring optical materials throughout the optical structure. Various new optical devices are enabled by the improved optical processing approaches.Type: ApplicationFiled: December 21, 2001Publication date: June 26, 2003Inventors: Xiangxin Bi, Elizabeth Anne Nevis, Ronald J. Mosso, Michael Edward Chapin, Shivkumar Chiruvolu, Sardar Hyat Khan, Sujeet Kumar, Herman Adrian Lopez, Nguyen Tran The Huy, Craig Richard Horne, Michael A. Bryan, Eric Euvrard
-
Patent number: 6554046Abstract: A cleaving tool provides pressurized gas to the edge of a substrate to cleave the substrate at a selected interface. A substrate, such as a bonded substrate, is loaded into the cleaving tool, and two halves of the tool are brought together to apply a selected pressure to the substrate. A compliant pad of selected elastic resistance provides support to the substrate while allowing the substrate to expand during the cleaving process. Bringing the two halves of the tool together also compresses an edge seal against the perimeter of the substrate. A thin tube connected to a high-pressure gas source extends through the edge seal and provides a burst of gas to separate the substrate into at least two sheets. In a further embodiment, the perimeter of the substrate is struck with an edge prior to applying the gas pressure.Type: GrantFiled: November 27, 2000Date of Patent: April 29, 2003Assignee: Silicon Genesis CorporationInventors: Michael A. Bryan, James K. Kai
-
Patent number: 6544862Abstract: A method of forming substrates. The method includes providing a donor substrate; and forming a particle accumulation region at a selected depth in the donor substrate. The method includes diffusing a plurality of particles into the particle accumulation region to add stress to the particle accumulation region; and separating a thickness of material above the selected depth in the donor substrate.Type: GrantFiled: January 14, 2000Date of Patent: April 8, 2003Assignee: Silicon Genesis CorporationInventor: Michael A. Bryan
-
Publication number: 20030035642Abstract: Structures include a substrate with a release layer on the surface of the substrate and a uniform material over the release layer. The release layer generally includes powders or partly sintered powders. In some embodiments the uniform material is an optical material, which can be a glass. The optical material can be mechanically decoupled fro the substrate such that the optical material is stress free. The release layer can function as a transfer layer for transferring the uniform material to another substrate of separating the uniform material to create a freestanding structure. The release layer can be formed by the deposition of a material with a higher sintering temperature than powders used to form the uniform material. In other embodiments, a heating step is performed to preserve the release layer while consolidating powders on top into the uniform material.Type: ApplicationFiled: August 17, 2001Publication date: February 20, 2003Inventor: Michael A. Bryan
-
Patent number: 6513564Abstract: A cleaving tool provides pressurized gas to the edge of a substrate in combination with a sharpened edge to cleave the substrate at a selected interface. The edge of the tool is tapped against the perimeter of a substrate, such as a bonded substrate, and a burst of gas pressure is then applied at approximately the point of contact with the edge of the tool. The combination of mechanical force and gas pressure separates the substrate into two halves at a selected interface, such as a weakened layer in a donor wafer.Type: GrantFiled: March 14, 2001Date of Patent: February 4, 2003Assignee: Silicon Genesis CorporationInventors: Michael A. Bryan, James K. Kai
-
Publication number: 20020164119Abstract: Gradient index lenses are described that are integrated within a planar optical structure. The gradient index lens is optically coupled to a planar optical waveguide. In some embodiments, the gradient index lens with variation in index-of-refraction n one dimension is within an optical fiber. The optical fiber includes cladding at least along the edges of the central plane of the gradient index lens. Methods for forming the integrated structures are described. Further optical structures involving the gradient index lenses are also described.Type: ApplicationFiled: May 3, 2002Publication date: November 7, 2002Inventors: Michael A. Bryan, Elizabeth Anne Nevis