Patents by Inventor Michael A. Guillorn

Michael A. Guillorn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8754530
    Abstract: A method for fabricating a transistor having self-aligned borderless electrical contacts is disclosed. A gate stack is formed on a silicon region. An off-set spacer is formed surrounding the gate stack. A sacrificial layer that includes a carbon-based film is deposited overlying the silicon region, the gate stack, and the off-set spacer. A pattern is defined in the sacrificial layer to define a contact area for the electrical contact. The pattern exposes at least a portion of the gate stack and source/drain. A dielectric layer is deposited overlying the sacrificial layer that has been patterned and the portion of the gate stack that has been exposed. The sacrificial layer that has been patterned is selectively removed to define the contact area at the height that has been defined. The contact area for the height that has been defined is metalized to form the electrical contact.
    Type: Grant
    Filed: August 18, 2008
    Date of Patent: June 17, 2014
    Assignee: International Business Machines Corporation
    Inventors: Katherina E. Babich, Josephine B. Chang, Nicholas C. Fuller, Michael A. Guillorn, Isaac Lauer, Michael J. Rooks
  • Publication number: 20140151757
    Abstract: Single crystalline semiconductor fins are formed on a single crystalline buried insulator layer. After formation of a gate electrode straddling the single crystalline semiconductor fins, selective epitaxy can be performed with a semiconductor material that grows on the single crystalline buried insulator layer to form a contiguous semiconductor material portion. The thickness of the deposited semiconductor material in the contiguous semiconductor material portion can be selected such that sidewalls of the deposited semiconductor material portions do not merge, but are conductively connected to one another via horizontal portions of the deposited semiconductor material that grow directly on a horizontal surface of the single crystalline buried insulator layer. Simultaneous reduction in the contact resistance and parasitic capacitance for a fin field effect transistor can be provided through the contiguous semiconductor material portion and cylindrical contact via structures.
    Type: Application
    Filed: December 3, 2012
    Publication date: June 5, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Anirban Basu, Josephine B. Chang, Michael A. Guillorn, Amlan Majumdar
  • Publication number: 20140151756
    Abstract: A stressed single crystalline epitaxial semiconductor layer having a first type stress is formed on a single crystalline substrate layer. First and second semiconductor fins are formed by patterning the stressed single crystalline epitaxial semiconductor layer. A center portion of each first semiconductor fin is undercut to form a recessed region, while the bottom surface of each second semiconductor fin maintains epitaxial registry with the single crystalline substrate layer. The center portion of each first semiconductor fin is under a second type of stress, which is the opposite of the first type of stress. A first field effect transistor formed on the first semiconductor fins can include first channels under the second type of stress along direction of current flow, and a second field effect transistor formed on the second semiconductor fins can include second channels under the first type of stress along the direction of current flow.
    Type: Application
    Filed: December 3, 2012
    Publication date: June 5, 2014
    Applicant: International Business Machines Corporation
    Inventors: Josephine B. Chang, Paul Chang, Michael A. Guillorn, Amlan Majumdar
  • Patent number: 8741722
    Abstract: A method includes defining active regions on a substrate, forming a dummy gate stack material over exposed portions of the active regions of the substrate and non-active regions of the substrate, removing portions of the dummy gate stack material to expose portions of the active regions and non-active regions of the substrate and define dummy gate stacks, forming a gap-fill dielectric material over the exposed portions of the substrate and the source and drain regions, removing portions of the gap-fill dielectric material to expose the dummy gate stacks, removing the dummy gate stacks to form dummy gate trenches, forming dividers within the dummy gate trenches, depositing gate stack material inside the dummy gate trenches, over the dividers, and the gap-fill dielectric material, and removing portions of the gate stack material to define gate stacks.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: June 3, 2014
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Paul C. Chang, Michael A. Guillorn, Jeffrey W. Sleight
  • Publication number: 20140148012
    Abstract: A stack of an organic planarization layer (OPL) and a template layer is provided over a substrate. The template layer is patterned to induce self-assembly of a copolymer layer to be subsequently deposited. A copolymer layer is deposited and annealed to form phase-separated copolymer blocks. An original self-assembly pattern is formed by removal of a second phase separated polymer relative to a first phase separated polymer. The original pattern is transferred into the OPL by an anisotropic etch, and the first phase separated polymer and the template layer are removed. A spin-on dielectric (SOD) material layer is deposited over the patterned OPL that includes the original pattern to form SOD portions that fill trenches within the patterned OPL. The patterned OPL is removed selective to the SOD portions, which include a complementary pattern. The complementary pattern of the SOD portions is transferred into underlying layers by an anisotropic etch.
    Type: Application
    Filed: August 16, 2012
    Publication date: May 29, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michael A. Guillorn, Steven J. Holmes, Chi-Chun Liu, Hiroyuki Miyazoe, Hsinyu Tsai
  • Publication number: 20140138771
    Abstract: A cluster of semiconductor fins is formed on an insulator layer. A masking material layer is formed over the array of semiconductor fins such that spaces between adjacent semiconductor fins are filled with the masking material layer. A photoresist layer is applied over the masking material layer, and is lithographically patterned. The masking material layer is etched to physically expose a sidewall surface of a portion of an outermost semiconductor fin in regions not covered by the photoresist layer. A recessed region is formed in the insulator layer such that an edge of the recessed region is formed within an area from which a portion of the semiconductor fin is removed. The photoresist layer and the masking material layer are removed. Within the cluster, a region is provided that has a lesser number of semiconductor fins than another region in which semiconductor fins are not etched.
    Type: Application
    Filed: November 16, 2012
    Publication date: May 22, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Markus Brink, Josephine B. Chang, Michael A. Guillorn, HsinYu Tsai
  • Publication number: 20140141578
    Abstract: A cluster of semiconductor fins is formed on an insulator layer. A masking material layer is formed over the array of semiconductor fins such that spaces between adjacent semiconductor fins are filled with the masking material layer. A photoresist layer is applied over the masking material layer, and is lithographically patterned. The masking material layer is etched to physically expose a sidewall surface of a portion of an outermost semiconductor fin in regions not covered by the photoresist layer. A recessed region is formed in the insulator layer such that an edge of the recessed region is formed within an area from which a portion of the semiconductor fin is removed. The photoresist layer and the masking material layer are removed. Within the cluster, a region is provided that has a lesser number of semiconductor fins than another region in which semiconductor fins are not etched.
    Type: Application
    Filed: January 15, 2013
    Publication date: May 22, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Markus Brink, Josephine B. Chang, Michael A. Guillorn, HsinYu Tsai
  • Publication number: 20140131817
    Abstract: Disposable gate structures are formed on a semiconductor substrate. A planarization dielectric layer is deposited over the disposable gate structures and planarized to provide a top surface that is coplanar with top surface of the disposable gate structures. The planarization dielectric layer at this point includes gap-fill keyholes between narrowly spaced disposable gate structures. A printable dielectric layer is deposited over the planarization dielectric layer to fill the gap-fill keyholes. Areas of the printable dielectric layer over the gap-fill keyholes are illuminated with radiation that cross-links cross-linkable bonds in the material of the printable dielectric layer. Non-crosslinked portions of the printable dielectric layer are subsequently removed selective to crosslinked portions of the printable dielectric layer, which fills at least the upper portion of each gate-fill keyhole. The disposable gate structures are removed to form gate cavities.
    Type: Application
    Filed: January 17, 2014
    Publication date: May 15, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Paul Chang, Josephine B. Chang, Michael A. Guillorn, Jeffrey W. Sleight
  • Patent number: 8716695
    Abstract: A method of fabricating a FET device is provided which includes the following steps. Nanowires/pads are formed in a SOI layer over a BOX layer, wherein the nanowires are suspended over the BOX. A HSQ layer is deposited that surrounds the nanowires. A portion(s) of the HSQ layer that surround the nanowires are cross-linked, wherein the cross-linking causes the portion(s) of the HSQ layer to shrink thereby inducing strain in the nanowires. One or more gates are formed that retain the strain induced in the nanowires. A FET device is also provided wherein each of the nanowires has a first region(s) that is deformed such that a lattice constant in the first region(s) is less than a relaxed lattice constant of the nanowires and a second region(s) that is deformed such that a lattice constant in the second region(s) is greater than the relaxed lattice constant of the nanowires.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: May 6, 2014
    Assignee: International Business Machines Corporation
    Inventors: Guy Cohen, Michael A. Guillorn, Conal E. Murray
  • Publication number: 20140117464
    Abstract: FinFET devices and methods for the fabrication thereof are provided. In one aspect, a method for fabricating a FET device includes the following steps. A wafer is provided having an active layer on an insulator. A plurality of fin hardmasks are patterned on the active layer. A dummy gate is placed over a central portion of the fin hardmasks. One or more doping agents are implanted into source and drain regions of the device. A dielectric filler layer is deposited around the dummy gate. The dummy gate is removed to form a trench in the dielectric filler layer. The fin hardmasks are used to etch a plurality of fins in the active layer within the trench. The doping agents are activated. A replacement gate is formed in the trench, wherein the step of activating the doping agents is performed before the step of forming the replacement gate.
    Type: Application
    Filed: January 7, 2014
    Publication date: May 1, 2014
    Applicant: International Business Machines Corporation
    Inventors: Josephine B. Chang, Michael A. Guillorn, Wilfried Ernst-August Haensch
  • Patent number: 8703576
    Abstract: Disposable gate structures are formed on a semiconductor substrate. A planarization dielectric layer is deposited over the disposable gate structures and planarized to provide a top surface that is coplanar with top surface of the disposable gate structures. The planarization dielectric layer at this point includes gap-fill keyholes between narrowly spaced disposable gate structures. A printable dielectric layer is deposited over the planarization dielectric layer to fill the gap-fill keyholes. Areas of the printable dielectric layer over the gap-fill keyholes are illuminated with radiation that cross-links cross-linkable bonds in the material of the printable dielectric layer. Non-crosslinked portions of the printable dielectric layer are subsequently removed selective to crosslinked portions of the printable dielectric layer, which fills at least the upper portion of each gate-fill keyhole. The disposable gate structures are removed to form gate cavities.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: April 22, 2014
    Assignee: International Business Machines Corporation
    Inventors: Paul Chang, Josephine B. Chang, Michael A. Guillorn, Jeffrey W. Sleight
  • Publication number: 20140103457
    Abstract: A semiconductor device including a gate structure present on a channel portion of a semiconductor substrate and at least one gate sidewall spacer adjacent to the gate structure. In one embodiment, the gate structure includes a work function metal layer present on a gate dielectric layer, a metal semiconductor alloy layer present on a work function metal layer, and a dielectric capping layer present on the metal semiconductor alloy layer. The at least one gate sidewall spacer and the dielectric capping layer may encapsulate the metal semiconductor alloy layer within the gate structure.
    Type: Application
    Filed: October 17, 2012
    Publication date: April 17, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Cyril Cabral, JR., Josephine B. Chang, Michael P. Chudzik, Martin M. Frank, Michael A. Guillorn, Christian Lavoie, Shreesh Narasimha, Vijay Narayanan
  • Publication number: 20140103422
    Abstract: A MEMS transistor for a FBEOL level of a CMOS integrated circuit is disclosed. The MEMS transistor includes a cavity within the integrated circuit. A MEMS cantilever switch having two ends is disposed within the cavity and anchored at least at one of the two ends. A gate and a drain are in a sidewall of the cavity, and are separated from the MEMS cantilever switch by a gap. In response to a voltage applied to the gate, the MEMS cantilever switch moves across the gap in a direction parallel to the plane of the FBEOL level of the CMOS integrated circuit into electrical contact with the drain to permit a current to flow between the source and the drain. Methods for fabricating the MEMS transistor are also disclosed. In accordance with the methods, a MEMS cantilever switch, a gate, and a drain are constructed on a far back end of line (FBEOL) level of a CMOS integrated circuit in a plane parallel to the FBEOL level.
    Type: Application
    Filed: November 8, 2012
    Publication date: April 17, 2014
    Applicant: International Business Machines Corporation
    Inventors: Leland CHANG, Guy Cohen, Michael A. Guillorn, Effendi Leobandung, Fei Liu, Ghavam G. Shahidi
  • Publication number: 20140106531
    Abstract: A semiconductor device including a gate structure present on a channel portion of a semiconductor substrate and at least one gate sidewall spacer adjacent to the gate structure. In one embodiment, the gate structure includes a work function metal layer present on a gate dielectric layer, a metal semiconductor alloy layer present on a work function metal layer, and a dielectric capping layer present on the metal semiconductor alloy layer. The at least one gate sidewall spacer and the dielectric capping layer may encapsulate the metal semiconductor alloy layer within the gate structure.
    Type: Application
    Filed: November 15, 2012
    Publication date: April 17, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Cyril Cabral, Jr., Josephine B. Chang, Michael P. Chudzik, Martin M. Frank, Michael A. Guillorn, Christian Lavoie, Shreesh Narasimha, Vijay Narayanan
  • Publication number: 20140106552
    Abstract: A MEMS transistor for a FBEOL level of a CMOS integrated circuit is disclosed. The MEMS transistor includes a cavity within the integrated circuit. A MEMS cantilever switch having two ends is disposed within the cavity and anchored at least at one of the two ends. A gate and a drain are in a sidewall of the cavity, and are separated from the MEMS cantilever switch by a gap. In response to a voltage applied to the gate, the MEMS cantilever switch moves across the gap in a direction parallel to the plane of the FBEOL level of the CMOS integrated circuit into electrical contact with the drain to permit a current to flow between the source and the drain. Methods for fabricating the MEMS transistor are also disclosed. In accordance with the methods, a MEMS cantilever switch, a gate, and a drain are constructed on a far back end of line (FBEOL) level of a CMOS integrated circuit in a plane parallel to the FBEOL level.
    Type: Application
    Filed: October 16, 2012
    Publication date: April 17, 2014
    Applicant: International Business Machines Corporation
    Inventors: Leland Chang, Guy Cohen, Michael A. Guillorn, Effendi Leobandung, Fei Liu, Ghavam G. Shahidi
  • Patent number: 8692229
    Abstract: In one aspect, a FET device is provided. The FET device includes a substrate; a semiconductor material on the substrate; at least one gate on the substrate surrounding a portion of the semiconductor material that serves as a channel region of the device, wherein portions of the semiconductor material extending out from the gate serve as source and drain regions of the device, and wherein the source and drain regions of the device are displaced from the substrate; a planarizing dielectric on the device covering the gate and the semiconductor material; and contacts which extend through the planarizing dielectric and surround the source and drain regions of the device.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: April 8, 2014
    Assignee: International Business Machines Corporation
    Inventors: Guy M. Cohen, Michael A. Guillorn
  • Publication number: 20140065774
    Abstract: Fin-defining mask structures are formed over a semiconductor material layer having a first semiconductor material and a disposable gate structure is formed thereupon. A gate spacer is formed around the disposable gate structure and physically exposed portions of the fin-defining mask structures are subsequently removed. The semiconductor material layer is recessed employing the disposable gate structure and the gate spacer as an etch mask to form recessed semiconductor material portions. Embedded planar source/drain stressors are formed on the recessed semiconductor material portions by selective deposition of a second semiconductor material having a different lattice constant than the first semiconductor material. After formation of a planarization dielectric layer, the disposable gate structure is removed. A plurality of semiconductor fins are formed employing the fin-defining mask structures as an etch mask. A replacement gate structure is formed on the plurality of semiconductor fins.
    Type: Application
    Filed: November 11, 2013
    Publication date: March 6, 2014
    Applicant: International Business Machines Corporation
    Inventors: Josephine B. Chang, Paul Chang, Michael A. Guillorn, Jeffrey W. Sleight
  • Patent number: 8658461
    Abstract: A field effect transistor includes a metal carbide source portion, a metal carbide drain portion, an insulating carbon portion separating the metal carbide source portion from the metal carbide portion, a nanostructure formed over the insulating and carbon portion and connecting the metal carbide source portion to the metal carbide drain portion, and a gate stack formed on over at least a portion of the insulating carbon portion and at least a portion of the nanostructure.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: February 25, 2014
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Josephine B. Chang, Alfred Grill, Michael A. Guillorn, Christian Lavoie, Eugene J. O'Sullivan
  • Patent number: 8658050
    Abstract: Techniques for minimizing or eliminating pattern deformation during lithographic pattern transfer to inorganic substrates are provided. In one aspect, a method for pattern transfer into an inorganic substrate is provided. The method includes the following steps. The inorganic substrate is provided. An organic planarizing layer is spin-coated on the inorganic substrate. The organic planarizing layer is baked. A hardmask is deposited onto the organic planarizing layer. A photoresist layer is spin-coated onto the hardmask. The photoresist layer is patterned. The hardmask is etched through the patterned photoresist layer using reactive ion etching (RIE). The organic planarizing layer is etched through the etched hardmask using RIE. A high-temperature anneal is performed in the absence of oxygen. The inorganic substrate is etched through the etched organic planarizing layer using reactive ion etching.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: February 25, 2014
    Assignee: International Business Machines Corporation
    Inventors: Sebastian Ulrich Engelmann, Martin Glodde, Michael A. Guillorn
  • Publication number: 20140048884
    Abstract: After formation of gate stacks, a carbon-based template layer is deposited over the gate stacks, and is optionally planarized to provide a planar top surface. A hard mask layer and a photoresist layer are subsequently formed above the carbon-based template layer. A pattern including openings is formed within the photoresist layer. The pattern is subsequently transferred through the hard mask layer and the carbon-based template layer with high selectivity to gate spacers to form self-aligned cavities within the carbon-based template layer. Contact structures are formed within the carbon-based template layer by a damascene method. The hard mask layer and the carbon-based template layer are subsequently removed selective to the contact structures. The contact structures can be formed as contact bar structures or contact via structures. Optionally, a contact-level dielectric layer can be subsequently deposited.
    Type: Application
    Filed: August 29, 2012
    Publication date: February 20, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Gregory Breyta, Josephine B. Chang, Sebastian U. Engelmann, Michael A. Guillorn, David P. Klaus, Adam M. Pyzyna