Patents by Inventor Michael A. Ramsey

Michael A. Ramsey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090032399
    Abstract: A microfabricated device employing a bridging membrane and methods for electrokinetic transport of a liquid phase biological or chemical material using the same are described. The bridging membrane is deployed in or adjacent to a microchannel and permits either ionic current flow or the transport of gas species, while inhibiting the bulk flow of material. The use of bridging membranes in accordance with this invention is applicable to a variety of processes, including electrokinetically induced pressure flow in a region of a microchannel that is not influenced by an electric field, sample concentration enhancement and injection, as well as improving the analysis of materials where it is desired to eliminate electrophoretic bias. Other applications of the bridging membranes according to this invention include the separation of species from a sample material, valving of fluids in a microchannel network, mixing of different materials in a microchannel, and the pumping of fluids.
    Type: Application
    Filed: October 19, 2007
    Publication date: February 5, 2009
    Inventors: Stephen C. Jacobson, J. Michael Ramsey, Christopher T. Culbertson, William B. Whitten, Robert S. Foote
  • Publication number: 20080272000
    Abstract: A microfabricated device employing a bridging membrane and methods for electrokinetic transport of a liquid phase biological or chemical material using the same are described. The bridging membrane is deployed in or adjacent to a microchannel and permits either ionic current flow or the transport of gas species, while inhibiting the bulk flow of material. The use of bridging membranes in accordance with this invention is applicable to a variety of processes, including electrokinetically induced pressure flow in a region of a microchannel that is not influenced by an electric field, sample concentration enhancement and injection, as well as improving the analysis of materials where it is desired to eliminate electrophoretic bias. Other applications of the bridging membranes according to this invention include the separation of species from a sample material, valving of fluids in a microchannel network, mixing of different materials in a microchannel, and the pumping of fluids.
    Type: Application
    Filed: October 19, 2007
    Publication date: November 6, 2008
    Inventors: Stephen C. Jacobson, J. Michael Ramsey, Christopher T. Culbertson, William B. Whitten, Robert S. Foote
  • Patent number: 7422669
    Abstract: A microfluidic device and method for forming and dispensing minute volume segments of a material are described. In accordance with the present invention, a microfluidic device and method are provided for spatially confining the material in a focusing element. The device is also adapted for segmenting the confined material into minute volume segments, and dispensing a volume segment to a waste or collection channel. The device further includes means for driving the respective streams of sample and focusing fluids through respective channels into a chamber, such that the focusing fluid streams spatially confine the sample material. The device may also include additional means for driving a minute volume segment of the spatially confined sample material into a collection channel in fluid communication with the waste reservoir.
    Type: Grant
    Filed: January 16, 2004
    Date of Patent: September 9, 2008
    Assignee: UT-Battelle, LLC
    Inventors: Stephen C. Jacobson, J. Michael Ramsey
  • Patent number: 7419575
    Abstract: Microfluidic systems and methods are disclosed which are adapted to transport and lyse cellular components of a test sample for analysis. The disclosed microfluidic systems and methods, which employ an electric field to rupture the cell membrane, cause unusually rapid lysis, thereby minimizing continued cellular activity and resulting in greater accuracy of analysis of cell processes.
    Type: Grant
    Filed: June 1, 2004
    Date of Patent: September 2, 2008
    Assignee: UT-Battelle, LLC
    Inventors: Christopher T. Culbertson, Stephen C. Jacobson, Maxine A. McClain, J. Michael Ramsey
  • Publication number: 20080128279
    Abstract: A microfabricated device employing a bridging membrane and methods for electrokinetic transport of a liquid phase biological or chemical material using the same are described. The bridging membrane is deployed in or adjacent to a microchannel and permits either ionic current flow or the transport of gas species, while inhibiting the bulk flow of material. The use of bridging membranes in accordance with this invention is applicable to a variety of processes, including electrokinetically induced pressure flow in a region of a microehannel that is not influenced by an electric field, sample concentration enhancement and injection, as well as improving the analysis of materials where it is desired to eliminate electrophoretic bias. Other applications of the bridging membranes according to this invention include the separation of species from a sample material, valving of fluids in a microchannel network, mixing of different materials in a microchannel, and the pumping of fluids.
    Type: Application
    Filed: October 19, 2007
    Publication date: June 5, 2008
    Inventors: Stephen C. Jacobson, J. Michael Ramsey, Christopher T. Culbertson, William B. Whitten, Robert S. Foote
  • Publication number: 20080047716
    Abstract: A coiled tubing connection system is used in a well. A connector having an engagement end is used to couple a wellbore device to the end of a coiled tubing. The connector is spoolable, and the engagement end comprises engagement features that facilitate formation of a connection that is dependable and less susceptible to separation.
    Type: Application
    Filed: August 22, 2006
    Publication date: February 28, 2008
    Inventors: L. Michael McKee, Bart Thomeer, Harold Steven Bissonnette, Michael Ramsey, Robert Bucher, Michael H. Kenison, Robert Greenaway
  • Patent number: 7297243
    Abstract: A microfabricated device employing a bridging membrane and methods for electrokinetic transport of a liquid phase biological or chemical material using the same are described. The bridging membrane is deployed in or adjacent to a microchannel and permits either ionic current flow or the transport of gas species, while inhibiting the bulk flow of material. The use of bridging membranes in accordance with this invention is applicable to a variety of processes, including electrokinetically induced pressure flow in a region of a microchannel that is not influenced by an electric field, sample concentration enhancement and injection, as well as improving the analysis of materials where it is desired to eliminate electrophoretic bias. Other applications of the bridging membranes according to this invention include the separation of species from a sample material, valving of fluids in a microchannel network, mixing of different materials in a microchannel, and the pumping of fluids.
    Type: Grant
    Filed: September 23, 2003
    Date of Patent: November 20, 2007
    Assignee: Ut-Battelle, LLC
    Inventors: Stephen C. Jacobson, J. Michael Ramsey
  • Publication number: 20070175637
    Abstract: A technique is provided to form perforations in a wellbore. The formation of perforations is carefully controlled by a perforating device to create a series of sequential perforations in a desired arrangement. The perforating device is lowered to a desired location in the wellbore and then moved incrementally to enable sequential perforations in the desired arrangement.
    Type: Application
    Filed: December 14, 2006
    Publication date: August 2, 2007
    Inventors: Lawrence J. Leising, Robert Michael Ramsey, Howard L. McGill
  • Publication number: 20070156118
    Abstract: A cap for use in priming a medical connector that has a distal end at which is disposed a distal connection tip with an aperture through which fluid may flow, and the connector having an internal valve. The cap has a reservoir device with an internal volume and a first opening at a proximal end that is connected with the aperture of the connection tip. The reservoir has a second opening at which is disposed an hydrophobic filter for allowing gases to vent to the atmosphere while retaining liquid in the reservoir device. Over the reservoir device is mounted a slidable housing device used to activate the internal valve of the connector to a flow configuration at which fluid flows from the connector into the reservoir device. The user monitors the reservoir device and when gas has been vented so that only liquid remains, the user slides the housing device to de-activate the connector to the non-flow configuration at which the connector draws back into itself the liquid stored in the reservoir.
    Type: Application
    Filed: January 2, 2006
    Publication date: July 5, 2007
    Inventors: Michael Ramsey, Kenneth Whitley, John Phillips
  • Patent number: 7238268
    Abstract: A method for conducting a broad range of biochemical analyses or manipulations on a series of nano- to subnanoliter reaction volumes and an apparatus for carrying out the same are disclosed. The invention is implemented on a fluidic microchip to provide high serial throughput. In particular, the disclosed device is a microfabricated channel device that can manipulate nanoliter or subnanoliter reaction volumes in a controlled manner to produce results at rates of 1 to 10 Hz per channel. The reaction volumes are manipulated in serial fashion analogous to a digital shift register. The invention has application to such problems as screening molecular or cellular targets using single beads from split-synthesis combinatorial libraries, screening single cells for RNA or protein expression, genetic diagnostic screening at the single cell level, or performing single cell signal transduction studies.
    Type: Grant
    Filed: February 24, 2003
    Date of Patent: July 3, 2007
    Assignee: UT-Battelle, LLC
    Inventors: J. Michael Ramsey, Stephen C. Jacobson
  • Publication number: 20050261267
    Abstract: Pharmaceutical formulations comprising amoxycillin and clavulante in a ratio of from 10:1 to 20:1 are of use in the emperic treatment of infections potentially caused by DRSP.
    Type: Application
    Filed: November 21, 2003
    Publication date: November 24, 2005
    Inventors: Daniel Burch, Phillip John, Michael Ramsey, Harvey Zimmerman
  • Patent number: 6933498
    Abstract: An ion trap-based system for chemical analysis includes an ion trap array. The ion trap array includes a plurality of ion traps arranged in a 2-dimensional array for initially confining ions. Each of the ion traps comprise a central electrode having an aperture, a first and second insulator each having an aperture sandwiching the central electrode, and first and second end cap electrodes each having an aperture sandwiching the first and second insulator. A structure for simultaneously directing a plurality of different species of ions out from the ion traps is provided. A spectrometer including a detector receives and identifies the ions. The trap array can be used with spectrometers including time-of-flight mass spectrometers and ion mobility spectrometers.
    Type: Grant
    Filed: March 16, 2004
    Date of Patent: August 23, 2005
    Assignee: UT-Battelle, LLC
    Inventors: William B. Whitten, J. Michael Ramsey
  • Publication number: 20050136117
    Abstract: Formulations comprising amoxicillin and clavulanate for reconstitution into an aqueous suspension incorporate low levels of carboxymethylcellulose sodium to stabilise the pH thereof.
    Type: Application
    Filed: June 15, 2004
    Publication date: June 23, 2005
    Inventors: Michael Ramsey, Jill Rickman
  • Patent number: 6822225
    Abstract: A method and apparatus is disclosed for flowing a sample gas and a reactant gas (38, 43) past a corona discharge electrode (26) situated at a first location in an ion drift chamber (24), applying a pulsed voltage waveform comprising a varying pulse component and a dc bias component to the corona discharge electrode (26) to cause a corona which in turn produces ions from the sample gas and the reactant gas, applying a dc bias to the ion drift chamber (24) to cause the ions to drift to a second location (25) in the ion drift chamber (24), detecting the ions at the second location (25) in the drift chamber (24), and timing the period for the ions to drift from the corona discharge electrode to the selected location in the drift chamber.
    Type: Grant
    Filed: September 25, 2002
    Date of Patent: November 23, 2004
    Assignee: UT-Battelle LLC
    Inventors: Jun Xu, J. Michael Ramsey, William B. Whitten
  • Publication number: 20040224397
    Abstract: Microfluidic systems and methods are disclosed which are adapted to transport and lyse cellular components of a test sample for analysis. The disclosed microfluidic systems and methods, which employ an electric field to rupture the cell membrane, cause unusually rapid lysis, thereby minimizing continued cellular activity and resulting in greater accuracy of analysis of cell processes.
    Type: Application
    Filed: June 1, 2004
    Publication date: November 11, 2004
    Inventors: Christopher T. Culbertson, Stephen C. Jacobson, Maxine A. McClain, J. Michael Ramsey
  • Publication number: 20040195099
    Abstract: Disclosed are microfluidic devices and methods for performing analyses which, in a preferred embodiment, involve sample filtration, solid phase extraction for enrichment of target analytes and separation of target analytes via open channel electrochromatography. Small sample volumes of mixed analytes are resolvable in less than one minute using the disclosed devices and methods.
    Type: Application
    Filed: April 4, 2003
    Publication date: October 7, 2004
    Inventors: Stephen C. Jacobson, J. Michael Ramsey
  • Patent number: 6790328
    Abstract: A microfluidic device for forming and/or dispensing minute volume segments of a material is described. In accordance with one aspect of the present invention, a microfluidic device and method is provided for spatially confining the material in a focusing element. The device is also capable of segmenting the confined material into minute volume segments, and dispensing a volume segment to a waste or collection channel. The device further includes means for driving the respective streams of sample and focusing fluids through respective channels into a chamber, such that the focusing fluid streams spatially confine the sample material. The device may also include additional means for driving a minute volume segment of the spatially confined sample material into a collection channel in fluid communication with the waste reservoir.
    Type: Grant
    Filed: January 12, 2001
    Date of Patent: September 14, 2004
    Assignee: UT-Battelle, LLC
    Inventors: Stephen C. Jacobson, J. Michael Ramsey
  • Patent number: 6783647
    Abstract: Microfluidic systems and methods are disclosed which are adapted to transport and lyse cellular components of a test sample for analysis. The disclosed microfluidic systems and methods, which employ an electric field to rupture the cell membrane, cause unusually rapid lysis, thereby minimizing continued cellular activity and resulting in greater accuracy of analysis of cell processes.
    Type: Grant
    Filed: October 19, 2001
    Date of Patent: August 31, 2004
    Assignee: UT-Battelle, LLC
    Inventors: Christopher T. Culbertson, Stephen C. Jacobson, Maxine A. McClain, J. Michael Ramsey
  • Publication number: 20040164238
    Abstract: A method and apparatus is disclosed for flowing a sample gas and a reactant gas (38, 43) past a corona discharge electrode (26) situated at a first location in an ion drift chamber (24), applying a pulsed voltage waveform comprising a varying pulse component and a dc bias component to the corona discharge electrode (26) to cause a corona which in turn produces ions from the sample gas and the reactant gas, applying a dc bias to the ion drift chamber (24) to cause the ions to drift to a second location (25) in the ion drift chamber (24), detecting the ions at the second location (25) in the drift chamber (24), and timing the period for the ions to drift from the corona discharge electrode to the selected location in the drift chamber.
    Type: Application
    Filed: September 25, 2002
    Publication date: August 26, 2004
    Inventors: Jun Xu, J. Michael Ramsey, William B. Whitten
  • Publication number: 20040144648
    Abstract: A microfluidic device and method for forming and dispensing minute volume segments of a material are described. In accordance with the present invention, a microfluidic device and method are provided for spatially confining the material in a focusing element. The device is also adapted for segmenting the confined material into minute volume segments, and dispensing a volume segment to a waste or collection channel. The device further includes means for driving the respective streams of sample and focusing fluids through respective channels into a chamber, such that the focusing fluid streams spatially confine the sample material. The device may also include additional means for driving a minute volume segment of the spatially confined sample material into a collection channel in fluid communication with the waste reservoir.
    Type: Application
    Filed: January 16, 2004
    Publication date: July 29, 2004
    Inventors: Stephen C. Jacobson, J. Michael Ramsey