Patents by Inventor Michael Edward Badding

Michael Edward Badding has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11271201
    Abstract: An energy device has an electrode including lithium cobaltite (LCO) grains, where the LCO grains are sintered to one another forming a self-supporting sheet with porous passages. The porous passages wind and branch through the sheet. The energy device further includes a solid electrolyte comprising lithium phosphosulfide (LPS) overlaying a major surface of the sheet and extending into the porous passages. The sheet serves as mechanical support for the solid electrolyte, allowing for high temperature joining of the LPS to the LCO without binder in the LPS.
    Type: Grant
    Filed: July 24, 2019
    Date of Patent: March 8, 2022
    Assignee: Corning Incorporated
    Inventors: Michael Edward Badding, Ryan David Bayliss, Jennifer Anella Heine, Cameron Wayne Tanner
  • Publication number: 20220045355
    Abstract: A sintered composite ceramic, including: a lithium-garnet major phase; and a grain growth inhibitor minor phase, such that the grain growth inhibitor minor phase has a metal oxide in a range of 0.1 wt. % to 10 wt. % based on the total weight of the sintered composite ceramic.
    Type: Application
    Filed: August 6, 2021
    Publication date: February 10, 2022
    Inventors: Michael Edward Badding, Yinghong Chen, Aaron David DeGeorge, Ying Shi, Zhen Song
  • Publication number: 20220045354
    Abstract: An all-solid secondary battery including: a cathode layer including a cathode active material layer; an anode layer; and a solid electrolyte layer between the cathode layer and the anode layer, and the solid electrolyte layer including a solid electrolyte, wherein the anode layer includes an anode current collector, a first anode active material layer in contact with the solid electrolyte layer, and a second anode active material layer between the anode current collector and the first anode active material layer, wherein the first anode active material layer is a lithium-containing first metal layer, wherein the second anode active material layer includes a carbon-containing anode active material or a carbon-containing anode active material and a second metal, and wherein a surface of the solid electrolyte layer adjacent to the first anode active material layer has a porosity of 40 percent or less.
    Type: Application
    Filed: July 15, 2021
    Publication date: February 10, 2022
    Inventors: Jusik Kim, Myungjin Lee, Sewon Kim, Michael Edward BADDING, Jaemyung Chang, Zhen SONG
  • Publication number: 20210402646
    Abstract: A method of manufacturing ceramic tape includes a step of directing a tape of partially-sintered ceramic into a furnace. The tape is partially-sintered such that grains of the ceramic are fused to one another yet the tape still includes at least 10% porosity by volume, where the porosity refers to volume of the tape unoccupied by the ceramic. The method further includes steps of conveying the tape through the furnace and further sintering the tape as the tape is conveyed through the furnace. The porosity of the tape decreases during the further sintering step.
    Type: Application
    Filed: September 8, 2021
    Publication date: December 30, 2021
    Inventors: Michael Edward Badding, William Joseph Bouton, Jacqueline Leslie Brown, Timothy Joseph Curry, Roman E. Hurny, Lanrik Wayne Kester, Thomas Dale Ketcham, John Albert Olenick, Kathleen Ritter Olenick, Jeremy Paananen, Thomas Silverblatt, Dell Joseph St Julien, Viswanathan Venkateswaran, Nathan Michael Zink
  • Publication number: 20210408591
    Abstract: A battery includes a substrate; a composite cathode disposed on the substrate; a solid-state electrolyte disposed on the composite cathode; and a lithium anode disposed on the solid-state electrolyte, such that the composite cathode comprises a gel polymer electrolyte layer and a porous cathode active material layer. A method of forming a cathode for a solid-state battery includes mixing an active cathode material, at least one of a conductive carbon component and an electronic conductive component, and a polymer binder to form a slurry; immersing the slurry in an alcohol reagent to form a porous disc structure by phase conversion; and immersing the porous disc structure in a liquid electrolyte to form the cathode.
    Type: Application
    Filed: June 24, 2021
    Publication date: December 30, 2021
    Inventors: Michael Edward Badding, Mingli Cai, Jun Jin, Zhen Song, Zhaoyin Wen, Tongping Xiu, Liu Yao
  • Publication number: 20210380430
    Abstract: A process of forming a sintered article includes heating a green portion of a tape of polycrystalline ceramic and/or minerals in organic binder at a binder removal zone to a temperature sufficient to pyrolyze the binder; horizontally conveying the portion of tape with organic binder removed from the binder removal zone to a sintering zone; and sintering polycrystalline ceramic and/or minerals of the portion of tape at the sintering zone, wherein the tape simultaneously extends through the removal and sintering zones.
    Type: Application
    Filed: August 19, 2021
    Publication date: December 9, 2021
    Inventors: Michael Edward Badding, William Joseph Bouton, Douglas Edward Brackley, Lanrik Wayne Kester, Thomas Dale Ketcham, Eric Lee Miller, Cameron Wayne Tanner, James William Zimmermann
  • Publication number: 20210363065
    Abstract: A sintered composite ceramic, including: a lithium-garnet major phase; and a lithium-rich minor phase, such that the lithium-rich minor phase comprises LixZrO(x+4)/2, with 2?x?10.
    Type: Application
    Filed: April 21, 2021
    Publication date: November 25, 2021
    Inventors: Michael Edward Badding, Jun Jin, Zhen Song, Jianmeng Su, Zhaoyin Wen, Tongping Xiu, Chujun Zheng
  • Publication number: 20210351411
    Abstract: A secondary battery includes a cathode layer including a cathode active material layer; an anode layer including an anode current collector and a metal layer disposed on the anode current collector; a solid electrolyte layer disposed between the cathode layer and the anode layer; and a graphite interlayer disposed between the solid electrolyte layer and the anode layer, wherein the interlayer comprises a graphite material having a crystallite size of about 1000 angstroms to about 1500 angstroms, when measured from a (110) diffraction peak, and having a hexagonal interplanar spacing about 500 angstroms to about 800 angstroms in a c-axis direction, when measured from a (002) diffraction peak, an aspect ratio of the graphite material is in a range of between about 0.44 and about 0.55.
    Type: Application
    Filed: January 5, 2021
    Publication date: November 11, 2021
    Inventors: Victor ROEV, Kyounghwan KIM, Sewon KIM, Jusik KIM, Michael Edward BADDING, Myungjin LEE, Jaemyung CHANG, Zhen SONG
  • Publication number: 20210347697
    Abstract: A sintered composite ceramic includes: a lithium-garnet major phase; and a lithium-rich minor phase, such that the lithium-rich minor phase has LixTiO(x+4)/2, with 0.66?x?4. The sintered composite ceramic may exhibit a relative density of at least 90% of a theoretical maximum density of the ceramic, an ionic conductivity of at least 0.35 mS·cm?1, or a critical current density (CCD) of at least 1.0 mA·cm?2.
    Type: Application
    Filed: May 5, 2021
    Publication date: November 11, 2021
    Inventors: Michael Edward Badding, Jun Jin, Zhen Song, Jianmeng Su, Zhaoyin Wen, Tongping Xiu, Chujun Zheng
  • Patent number: 11148321
    Abstract: A waveguide includes a body of material having a width, a thickness, and a length, where the width is orthogonal to the thickness, and the length is orthogonal to the thickness and the width. The material includes polycrystalline ceramic that is transmissive such that the body is configured as a waveguide. The thickness is no more than 5 millimeters and at least 20 nanometers, the width is greater than or equal to the thickness, and the length is at least 100 times greater than the width. The body of material has a granular profile such that grains of the material protrude generally outward from a surface of the body with a height of at least 25 nanometers and no more than 100 micrometers relative to recessed portions of the surface of the body at boundaries between the grains.
    Type: Grant
    Filed: February 11, 2021
    Date of Patent: October 19, 2021
    Assignee: Corning Incorporated
    Inventors: Michael Edward Badding, William Joseph Bouton, Jacqueline Leslie Brown, Timothy Joseph Curry, Roman E Hurny, Lanrik Wayne Kester, Thomas Dale Ketcham, John Albert Olenick, Kathleen Ritter Olenick, Jeremy Paananen, Thomas Silverblatt, Dell Joseph St Julien, Viswanathan Venkateswaran, Nathan Michael Zink
  • Publication number: 20210288352
    Abstract: A lithium-metal battery, includes: a substrate; a cathode disposed on the substrate; a garnet solid-state electrolyte disposed on the cathode; and a lithium anode disposed on the garnet solid-state electrolyte, such that a discoloration layer is disposed at an interface of the lithium anode and garnet solid-state electrolyte, the discoloration layer includes: a first portion; and a second portion, such that the first portion has a lithium component and the second portion has a garnet component. A method of forming a lithium-metal battery, includes: stacking a garnet source with at least one lithium source; and heating the stack at a temperature of at least 300° C. for a time in a range of 1 sec to 20 min to form a discoloration layer, such that the discoloration layer is disposed at an interface of the garnet source and the lithium source.
    Type: Application
    Filed: March 9, 2021
    Publication date: September 16, 2021
    Inventors: Michael Edward Badding, Jun Jin, Zhen Song, Jianmeng Su, Zhaoyin Wen, Tongping Xiu
  • Patent number: 11111155
    Abstract: A process of forming a sintered article includes heating a green portion of a tape of polycrystalline ceramic and/or minerals in organic binder at a binder removal zone to a temperature sufficient to pyrolyze the binder; horizontally conveying the portion of tape with organic binder removed from the binder removal zone to a sintering zone; and sintering polycrystalline ceramic and/or minerals of the portion of tape at the sintering zone, wherein the tape simultaneously extends through the removal and sintering zones.
    Type: Grant
    Filed: April 26, 2021
    Date of Patent: September 7, 2021
    Assignee: Corning Incorporated
    Inventors: Michael Edward Badding, William Joseph Bouton, Douglas Edward Brackley, Lanrik Wayne Kester, Thomas Dale Ketcham, Eric Lee Miller, Cameron Wayne Tanner, James William Zimmermann
  • Publication number: 20210253439
    Abstract: A process of forming a sintered article includes heating a green portion of a tape of polycrystalline ceramic and/or minerals in organic binder at a binder removal zone to a temperature sufficient to pyrolyze the binder; horizontally conveying the portion of tape with organic binder removed from the binder removal zone to a sintering zone; and sintering polycrystalline ceramic and/or minerals of the portion of tape at the sintering zone, wherein the tape simultaneously extends through the removal and sintering zones.
    Type: Application
    Filed: April 26, 2021
    Publication date: August 19, 2021
    Inventors: Michael Edward Badding, William Joseph Bouton, Douglas Edward Brackley, Lanrik Wayne Kester, Thomas Dale Ketcham, Eric Lee Miller, Cameron Wayne Tanner, James William Zimmermann
  • Publication number: 20210242495
    Abstract: A solid electrolyte including an inorganic lithium ion conductive film and a porous layer on a surface of the inorganic lithium ion conductive film, wherein the porous layer includes a first porous layer and a second porous layer, and the second porous layer is disposed between the inorganic lithium ion conductive film and the first porous layer, and wherein the first porous layer has a size greater which is than a pore size of the second porous layer.
    Type: Application
    Filed: April 23, 2021
    Publication date: August 5, 2021
    Inventors: Jusik KIM, Sewon KIM, Hyunseok KIM, Michael Edward BADDING, Zhen SONG, Karen E. THOMAS-ALYEA, Lincoln James MIARA, Dongmin IM
  • Publication number: 20210220947
    Abstract: A laser-welded assembly of opposing sheets of ceramic and glass, ceramic, or glass-ceramic compositions comprises an intervening bonding layer having a thickness dimension that separates the opposing sheets by less than about 1000 nm. Each of the opposing sheets has a thickness dimension at least about 20 times the thickness dimension of the intervening bonding layer. The intervening bonding layer has a melting point greater than that of one or both of the opposing sheets. The ceramic sheet is a pass-through sheet with a composite T/R spectrum comprising a portion that lies below about 30% across a target irradiation band residing at or above about 1400 nm and at or below about 4500 nm wavelength. The intervening bonding layer has an absorption spectrum comprising a portion that lies above about 80% across the target irradiation band. The assembly comprises a weld bonding the opposing surfaces of the opposing sheets.
    Type: Application
    Filed: February 19, 2019
    Publication date: July 22, 2021
    Inventors: Michael Edward Badding, Leonard Charles Dabich, II, David Mark Lance, Stephan Lvovich Logunov, Mark Alejandro Quesada, Alexander Mikhailovich Streltsov
  • Publication number: 20210202980
    Abstract: A method of forming a solid, dense, hermetic lithium-ion electrolyte membrane comprises combing an amorphous, glassy, or low melting temperature solid reactant with a refractory oxide reactant to form a mixture, casting the mixture to form a green body, and sintering the green body to form a solid membrane. The resulting electrolyte membranes can be incorporated into lithium-ion batteries.
    Type: Application
    Filed: March 8, 2021
    Publication date: July 1, 2021
    Inventors: Bruce Gardiner Aitken, Michael Edward Badding, George Halsey Beall, Curtis Robert Fekety, Lanrik Wayne Kester, Robert Michael Morena, Zhen Song
  • Patent number: 11038199
    Abstract: A solid electrolyte including an inorganic lithium ion conductive film and a porous layer on a surface of the inorganic lithium ion conductive film, wherein the porous layer includes a first porous layer and a second porous layer, and the second porous layer is disposed between the inorganic lithium ion conductive film and the first porous layer, and wherein the first porous layer has a size greater which is than a pore size of the second porous layer.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: June 15, 2021
    Assignees: SAMSUNG ELECTRONICS CO., LTD., CORNING INCORPORATED
    Inventors: Jusik Kim, Sewon Kim, Hyunseok Kim, Michael Edward Badding, Zhen Song, Karen E. Thomas-Alyea, Lincoln James Miara, Dongmin Im
  • Publication number: 20210175542
    Abstract: A lithium-sulfur battery includes: a substrate; a composite cathode disposed on the substrate; a solid-state electrolyte disposed on the composite cathode; and a lithium anode disposed on the solid-state electrolyte, such that the composite cathode comprises: active elemental sulfur, conductive carbon, and sulfide electrolyte, and the sulfide electrolyte is uniformly coated on at least one surface of the conductive carbon. A method of forming a composite cathode for a lithium-sulfur battery includes: synthesizing dispersed carbon fiber from cotton to form carbonized dispersed cotton fiber (CDCF) powder; in-situ coating of the CDCF with an electrolyte component to form a composite powder; and mixing active elemental sulfur powder with the composite powder to form the composite cathode.
    Type: Application
    Filed: December 8, 2020
    Publication date: June 10, 2021
    Inventors: Michael Edward Badding, Jun Jin, Zhen Song, Qing Wang, Zhaoyin Wen, Tongping Xiu
  • Publication number: 20210162626
    Abstract: A waveguide includes a body of material having a width, a thickness, and a length, where the width is orthogonal to the thickness, and the length is orthogonal to the thickness and the width. The material includes polycrystalline ceramic that is transmissive such that the body is configured as a waveguide. The thickness is no more than 5 millimeters and at least 20 nanometers, the width is greater than or equal to the thickness, and the length is at least 100 times greater than the width. The body of material has a granular profile such that grains of the material protrude generally outward from a surface of the body with a height of at least 25 nanometers and no more than 100 micrometers relative to recessed portions of the surface of the body at boundaries between the grains.
    Type: Application
    Filed: February 11, 2021
    Publication date: June 3, 2021
    Inventors: Michael Edward Badding, William Joseph Bouton, Jacqueline Leslie Brown, Timothy Joseph Curry, Roman E. Hurny, Lanrik Wayne Kester, Thomas Dale Ketcham, John Albert Olenick, Kathleen Ritter Olenick, Jeremy Paananen, Thomas Silverblatt, Dell Joseph St Julien, Viswanathan Venkateswaran, Nathan Michael Zink
  • Patent number: 11014822
    Abstract: A system, process and related sintered article are provided. The process includes supporting a piece of inorganic material with a pressurized gas and sintering the piece of inorganic material while supported by the pressurized gas by heating the piece of inorganic material to a temperature at or above a sintering temperature of the inorganic material such that the inorganic material is at least partially sintered forming the sintered article. The inorganic material is not in contact with a solid support during sintering. The sintered article, such as a ceramic article, is thin, has high surface quality, and/or has large surface areas.
    Type: Grant
    Filed: November 14, 2018
    Date of Patent: May 25, 2021
    Assignee: Corning Incorporated
    Inventors: Michael Edward Badding, William Joseph Bouton, Douglas Edward Brackley, Lanrik Wayne Kester, Thomas Dale Ketcham, Eric Lee Miller, Cameron Wayne Tanner, James William Zimmermann