Patents by Inventor Michael Evans

Michael Evans has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10968449
    Abstract: Disclosed herein are methods of controlling insect pests, in particular Leptinotarsa spp. which infest crop plants, and methods of providing plants resistant to such pests. Also disclosed are polynucleotides and recombinant DNA molecules and constructs useful in such methods, insecticidal compositions such as topical sprays containing insecticidal double-stranded RNAs, and solanaceous plants with improved resistance to infestation by Leptinotarsa spp. Further disclosed are methods of selecting target genes for RNAi-mediated silencing and control of Leptinotarsa spp.
    Type: Grant
    Filed: January 21, 2016
    Date of Patent: April 6, 2021
    Assignee: MONSANTO TECHNOLOGY LLC
    Inventors: Jodi Lynn Beattie, Michael John Crawford, Brian Donovan Eads, Lex Evan Flagel, Mahak Kapoor, Christina Marie Taylor
  • Publication number: 20210093619
    Abstract: The invention is directed to substituted bridged cycloalkane derivatives. Specifically, the invention is directed to compounds according to Formula IIIQ: wherein X6?, a, b, C8?, D8?, L82?, L83?, R81?, R82?, R83?, R84?, R85?, R86?, z82?, z84?, z85?, and z86? are as defined herein; or salts thereof. The compounds of the invention are inhibitors of the ATF4 pathway. Accordingly, the invention is further directed to pharmaceutical compositions comprising a compound of the invention. The invention is still further directed to methods of inhibiting the ATF4 pathway and treatment of disorders associated therewith using a compound of the invention or a pharmaceutical composition comprising a compound of the invention.
    Type: Application
    Filed: June 7, 2018
    Publication date: April 1, 2021
    Inventors: Jeffrey Michael AXTEN, Michael P. DEMARTINO, Karen Anderson EVANS, Biswajit KALITA, Jeffrey M. RALPH
  • Publication number: 20210093473
    Abstract: Embodiments provide methods and systems for treating aneurysms using filling structures filled with a curable medium An embodiment of a method comprises positioning at least one double-walled filling structure across the aneurysm and filling the structure(s) with a filling medium so that an outer wall conforms to the inside of the aneurysm and an inner wall forms a generally tubular lumen to provide for blood flow. The lumen is supported with a balloon or other expandable device while and/or after filling. The pressure within the structure and/or in the space between an external wall of the structure and the aneurysm wall is monitored and a flow of the medium into the structure is controlled responsive to the pressure. The pressure can also be used to determine a filling endpoint. The medium is hardened while the lumen remains supported by the balloon. The balloon is then removed after the medium hardens.
    Type: Application
    Filed: December 11, 2020
    Publication date: April 1, 2021
    Inventors: Michael A. Evans, Gwendolyn A. Watanabe, Amy Lee, Steven L. Herbowy
  • Publication number: 20210092969
    Abstract: Disclosed is a conveyor system including a first conveyor leading to an inspection point, the first conveyor including a diversion mechanism configured to divert an object based on failing to meet an inspection parameter. The system includes a second conveyor configured to transport a container configured to receive the object from the diversion mechanism. A control module is configured to co-register an image of the object captured at the inspection point with container ID data of the container.
    Type: Application
    Filed: September 30, 2019
    Publication date: April 1, 2021
    Applicant: Mettler-Toledo, LLC
    Inventors: Norbert HARTWIG, Michael A. EVANS, Kristofer LOPER, Christopher SISEMORE
  • Patent number: 10963821
    Abstract: An informatics platform provides an architecture to integrate information from relevant patient information systems.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: March 30, 2021
    Assignee: Roche Molecular Systems, Inc.
    Inventors: Michael Barnes, Stephen Burnell, William Evans, Weng Chi Lou, Mark M. Morita, Oluwatosin Oyeniran, Joseph Perez-Rogers, Joachim Schmid
  • Publication number: 20210085436
    Abstract: Described herein are systems and methods for providing personalized oral care. A system for oral care comprises an oral insert. The oral insert is sized and shaped according to a user's oral cavity, and has a plurality of fluid nozzles and an effluence conduit to channel fluid out of the user's oral cavity. Pressurized fluid provided through the nozzles are directed to, for example, the interproximal spaces between the user's teeth. In some variations, a system comprises an oral insert and an elastomeric substrate that is attached to the oral insert. In some variations, the elastomeric substrate comprises a textured surface vibrates and/or mechanically agitates and/or translates along the surface of the user's teeth. In some variations, a system for oral care comprises a microbiome collection chamber. Some variations comprise dental shim devices that are used for acquiring oral structure data and alignment between the upper and lower arches.
    Type: Application
    Filed: October 8, 2020
    Publication date: March 25, 2021
    Inventors: Ryan Christopher EVANS, Angela Junyan CHU, Sophie Katherine SHEELINE, Bruce Michael SCHENA, Michael Lee HANUSCHIK, Jonathan Riley COX, Kristina Jenna COOK
  • Publication number: 20210081547
    Abstract: Systems and methods for protecting cryptographic keys stored in a non-volatile memory. An example method may comprise: storing a device root key in a non-volatile memory; storing a volatile key in a volatile memory; storing a masked cryptographic key in the non-volatile memory, wherein the masked cryptographic key is produced by combining a cryptographic key and the device root key; storing a masked device root key in the non-volatile memory, wherein the masked root key is produced by combining the device root key and the volatile key; and erasing the device root key from the non-volatile memory.
    Type: Application
    Filed: January 30, 2019
    Publication date: March 18, 2021
    Inventors: Mark Evan MARSON, Michael A. HAMBURG
  • Publication number: 20210079710
    Abstract: In one aspect, a method is provided for controlling access to a facility including a movable barrier and a plurality of loading docks. The method includes receiving, from a user device associated with a vehicle, a check-in communication that includes a check-in identifier. The method includes receiving a verification communication that verifies a presence of the vehicle relative to a sensor associated with the movable barrier. The method further includes causing a movable barrier operator associated with the movable barrier to move the movable barrier between closed and open positions in response to the check-in identifier indicating authorization to access the facility and in response to receiving the verification communication. Further, the method includes selecting a particular loading dock from the plurality of loading docks and communicating a loading dock identification representative of the particular loading dock to the user device to direct the vehicle to the particular loading dock.
    Type: Application
    Filed: August 28, 2020
    Publication date: March 18, 2021
    Inventors: Patrick Evans, Michael Pilgrim
  • Patent number: 10940669
    Abstract: Described herein are insulating structures that include at least one microporous layer including a plurality of pores, a porous layer adjacent to the microporous layer, and a monolithic aerogel structure extending through the plurality of pores of the microporous layer and through at least part of the porous layer. The microporous layer filters aerogel dust from cracked or damaged aerogel within the scaffold, slowing or preventing loss of dust from the insulating structures.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: March 9, 2021
    Assignees: W. L. Gore & Associates, Inc., Aspen Aerogels, Inc.
    Inventors: Leslie Rikleen, Michael Magyar, Eric O'Bryan, David Mihalcik, Owen Evans, Nicholas Zafiropoulos, George Gould
  • Patent number: 10943450
    Abstract: A modular patient monitor provides a multipurpose, scalable solution for various patient monitoring applications. In an embodiment, a modular patient monitor utilizes multiple wavelength optical sensor and/or acoustic sensor technologies to provide blood constituent monitoring and acoustic respiration monitoring (ARM) at its core, including pulse oximetry parameters and additional blood parameter measurements such as carboxyhemoglobin (HbCO) and methemoglobin (HbMet). Expansion modules provide blood pressure BP, blood glucose, ECG, CO2, depth of sedation and cerebral oximetry to name a few. Aspects of the present disclosure also include a transport dock for providing enhanced portability and functionally to handheld monitors. In an embodiment, the transport dock provides one or more docking interfaces for placing monitoring components in communication with other monitoring components. In an embodiment, the transport dock attaches to the modular patient monitor.
    Type: Grant
    Filed: June 5, 2019
    Date of Patent: March 9, 2021
    Assignee: Masimo Corporation
    Inventors: Massi Joe E. Kiani, Ammar Al-Ali, Michael O'Reilly, Paul Ronald Jansen, Nicholas Evan Barker, Anand Sampath
  • Publication number: 20210046590
    Abstract: Techniques and devices are disclosed for fabrication layout device. The device includes a table with a work surface. The work surface being a continuous surface and configured to support a plurality of railing pieces for fabrication of a railing assembly. The device further includes a beam located above the work surface. The beam is operatively coupled to the table, such that the beam moves relative to the work surface in a first direction. Attached to the beam is an ink dispenser. The ink dispenser is configured to move along the beam in a second direction different from the first direction. The ink dispenser is further configured to dispense ink onto the work surface of the table in the form of a pattern of the railing assembly. Railing pieces are positioned on the pattern so that they can be assembled to one another.
    Type: Application
    Filed: October 29, 2020
    Publication date: February 18, 2021
    Inventors: Stephen Lawrence Chasse, John Michael Evans
  • Patent number: 10920199
    Abstract: The invention generally features compositions comprising induced pluripotent stem cell progenitors (also termed reprogramming progenitor cells) and methods of isolating such cells. The invention also provides compositions comprising induced pluripotent stem cells (iPSCs) derived from such progenitor cells. Induced pluripotent stem cell progenitors generate iPSCs at high efficiency. In particular embodiments the invention is predicated upon increased expression of an estrogen related receptor and changes in the oxidative and glycolytic pathways.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: February 16, 2021
    Assignee: SALK INSTITUTE FOR BIOLOGICAL STUDIES
    Inventors: Ronald Evans, Michael Downes, Yasuyuki Kida, Teruhisa Kawamura, Zong Wei, Ruth T. Yu, Annette R. Atkins
  • Patent number: 10919115
    Abstract: An additive manufacturing system includes a build platform, at least one first consolidation device, and at least one second consolidation device. The at least one first consolidation device is configured to direct at least one first energy beam to a first face of a component. The first face has a first orientation. The at least one second consolidation device is configured to simultaneously direct at least one second energy beam toward a second face of the component as the first consolidation device directs the at least one first energy beam toward the first face. The second face has a second orientation different from the first orientation.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: February 16, 2021
    Assignee: General Electric Company
    Inventors: John Joseph Madelone, Jr., Thomas Charles Adcock, John Broddus Deaton, Jr., Michael Evans Graham
  • Patent number: 10924400
    Abstract: A forwarding element includes data plane forwarding circuitry for forwarding data messages received by the forwarding element to other network elements in a network. The data-plane forwarding circuitry includes several snapshot-match circuitry units. Each snapshot-match circuitry unit compares a set of header fields of incoming data messages with a corresponding matching data. The data-plane forwarding circuitry also includes several snapshot-capture circuitry units. Each snapshot-capture circuitry units stores a set of header fields of data messages that matches a corresponding matching data.
    Type: Grant
    Filed: May 15, 2018
    Date of Patent: February 16, 2021
    Assignee: Barefoot Networks, Inc.
    Inventors: Patrick Bosshart, Michael Gregory Ferrara, Jay Evan Scott Peterson
  • Publication number: 20210038442
    Abstract: Various examples of a wearable sensor enclosure are described. In an example, a wearable sensor enclosure is generally oval-shaped with rigid interior that protects one or more sensors or other electronic devices. The enclosure includes a proximal component and a distal component. The proximal component of the enclosure optionally includes one or more openings for light to pass through for detection by sensing electronic devices. The distal component includes a protrusion positioned in an interior of the distal component and a lip positioned in along the perimeter of the distal component such that the lip surrounds the protrusion.
    Type: Application
    Filed: October 23, 2020
    Publication date: February 11, 2021
    Applicant: Verily Life Sciences LLC
    Inventors: Michael Jastrzebski, Kristin Size, David He, Harry Xiao, Linden Evans
  • Patent number: 10905571
    Abstract: Aneurysms are treated by filling at least one double-walled filling structure with a curable medium within the aneurysm. The filling structures may be delivered over balloon deployment mechanisms in order to shape and open tubular lumens therethrough. Scaffolds are placed into the tubular lumens in order to help maintain the shape, anchor the filling structures in place, and provide improved blood flow transition into and out of the tubular lumens.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: February 2, 2021
    Assignee: Nellix, Inc.
    Inventors: Michael A. Evans, Gwendolyn A. Watanabe, Amy Lee, Steven L. Herbowy
  • Patent number: 10905601
    Abstract: Various examples of a wearable sensor enclosure are described. In an example, a wearable sensor enclosure is generally oval-shaped with rigid interior that protects one or more sensors or other electronic devices. The enclosure includes a proximal component and a distal component. The proximal component of the enclosure optionally includes one or more openings for light to pass through for detection by sensing electronic devices. The distal component includes a protrusion positioned in an interior of the distal component and a lip positioned in along the perimeter of the distal component such that the lip surrounds the protrusion.
    Type: Grant
    Filed: April 12, 2019
    Date of Patent: February 2, 2021
    Assignee: VERILY LIFE SCIENCES LLC
    Inventors: Michael Jastrzebski, Kristin Size, David He, Harry Xiao, Linden Evans
  • Patent number: 10910153
    Abstract: Thermally annealed superparamagnetic core shell nanoparticles of an iron-cobalt alloy core and a silicon dioxide shell having high magnetic saturation are provided. A magnetic core of high magnetic moment obtained by compression sintering the thermally annealed superparamagnetic core shell nanoparticles is also provided. The magnetic core has little core loss due to hysteresis or eddy current flow.
    Type: Grant
    Filed: July 15, 2013
    Date of Patent: February 2, 2021
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., Toyota Jidosha Kabushiki Kaisha
    Inventors: Michael Paul Rowe, Sean Evan Sullivan, Daisuke Okamoto
  • Patent number: 10906132
    Abstract: An additive manufacturing system configured to manufacture a component including scan strategies for efficient utilization of one or more laser arrays. The additive manufacturing system includes at least one laser device, each configured as a laser array, and a build platform. Each laser device is configured to generate a plurality of laser beams. The component is disposed on the build platform. The at least one laser device is configured to sweep across the component and the build platform in at least one of a radial direction, a circumferential direction or a modified zig-zag pattern and simultaneously operate the one or more of the plurality of individually operable laser beams corresponding to a pattern of the layer of a build to generate successive layers of a melted powdered material on the component and the build platform corresponding to the pattern of the layer of the build. A method of manufacturing a component with the additive manufacturing system is also disclosed.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: February 2, 2021
    Assignee: General Electric Company
    Inventors: William Thomas Carter, Jason Harris Karp, Justin John Gambone, Jr., Lang Yuan, David Charles Bogdan, Jr., Victor Petrovish Ostroverkhov, Marshall Gordon Jones, Michael Evans Graham, Kevin George Harding
  • Patent number: D909894
    Type: Grant
    Filed: April 12, 2019
    Date of Patent: February 9, 2021
    Assignee: VERILY LIFE SCIENCES LLC
    Inventors: Michael Jastrzebski, Kristin Size, David He, Harry Xiao, Linden Evans