Patents by Inventor Michael Gould

Michael Gould has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220372683
    Abstract: A device for dosing a detergent ingredient into the drum of an automatic washing machine which can include a reservoir, a one-way valve, an inlet, and a dosing manifold.
    Type: Application
    Filed: May 17, 2022
    Publication date: November 24, 2022
    Inventors: Carlos Amador Zamarreno, Paul Gould, Michael Leslie Groombridge, Ahmad Khattab, Craig Nelson, Michael David Sawford, William Frank Tyldesley
  • Publication number: 20220258323
    Abstract: Described herein are various coupling systems to be used with storage units that are selectively coupled and decoupled. The coupling systems may be used with storage units that are stackable and/or transportable, thus allowing the storage units to function well within a large stationary environment, such as a basement, and also for a subset of the storage units to be selected and easily moved to another location.
    Type: Application
    Filed: May 4, 2022
    Publication date: August 18, 2022
    Inventors: Christopher S. Hoppe, Michael John Caelwaerts, Samuel A. Gould, Aaron M. Williams, Aaron S. Blumenthal, Michael Stearns, Grant T. Squiers, Steven W. Hyma, Jason D. Thurner, Yaron Brunner
  • Patent number: 11398871
    Abstract: Systems and methods for performing signed matrix operations using a linear photonic processor are provided. The linear photonic processor is formed as an array of first amplitude modulators and second amplitude modulators, the first amplitude modulators configured to encode elements of a vector into first optical signals and the second amplitude modulators configured to encode a product between the vector elements and matrix elements into second optical signals. An apparatus may be used to implement a signed value of an output of the linear processor. The linear photonic processor may be configured to perform matrix-vector and/or matrix-matrix operations.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: July 26, 2022
    Assignee: Lightmatter, Inc.
    Inventors: Darius Bunandar, Nicholas C. Harris, Michael Gould, Carl Ramey, Tomo Lazovich
  • Patent number: 11390154
    Abstract: Methods and systems for an electric motor-generator in a vehicle are provided. In one example, an electric motor-generator is provided that includes an engine interface configured to rotationally couple to a first engine, a transmission interface configured to rotationally couple to a first transmission of the first engine, and a rotor with a plurality of magnets at least partially surrounding a stator including a plurality of coils. The rotor is rotationally coupled to the engine interface and the transmission interface.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: July 19, 2022
    Assignee: Ford Global Technologies, LLC
    Inventors: Thomas Russell McBride, Megan Mackenzie Gould, Duane Allan Lewis, Jason Michael Sanderson, Brandon David Lint, James Trent, Brian Richard Light, Eric Pavlov
  • Patent number: 11281068
    Abstract: A nano-opto-electro-mechanical System (NOEMS) phase shifter is described. The NOEMS may include a multi-slot waveguide structure suspended in air. The multi-slot waveguide structure may include three or more waveguides separated from each other by slots. The width of the slots may be sufficiently small to support slot modes, where a substantial portion of the mode energy is within the slots. For example, the slots may have widths less than 200 nm or less than 100 nm. The multi-slot waveguide structure may be disposed in a trench formed though the upper cladding of a substrate. An undercut may be formed under the multi-slot waveguide structure to enable free motion of the structure. NOEMS phase modulators of the types described herein may be used in connection with photonic processing systems, telecom/datacom systems, analog systems, etc.
    Type: Grant
    Filed: November 24, 2020
    Date of Patent: March 22, 2022
    Assignee: Lightmatter, Inc.
    Inventor: Michael Gould
  • Publication number: 20220085777
    Abstract: Low-noise optical differential receivers are described. Such differential receivers may include a differential amplifier having first and second inputs and first and second outputs, and four photodetectors. A first and a second of such photodetectors are coupled to the first input of the differential amplifier, and a third and a fourth of such photodetectors are coupled to the second input of the differential amplifier. The anode of the first photodetector and the cathode of the second photodetector are coupled to the first input of the differential amplifier. The cathode of the third photodetector and the anode of the fourth photodetector are coupled to the second input of the differential amplifier. The optical receiver may involve two stages of signal subtraction, which may significantly increase noise immunity.
    Type: Application
    Filed: October 26, 2021
    Publication date: March 17, 2022
    Applicant: Lightmatter, Inc.
    Inventors: Nicholas C. Harris, Michael Gould, Omer Ozgur Yildirim
  • Patent number: 11256029
    Abstract: Photonic packages are described. One such photonic package includes a photonic chip, an application specific integrated circuit, and optionally, an interposer. The photonic chip includes photonic microelectromechanical system (MEMS) devices. A photonic package may include a material layer patterned to include recesses. The recesses are aligned with the photonic MEMS devices so as to form enclosed cavities around the photonic MEMS devices. This arrangement preserves the integrity of the photonic MEMS devices.
    Type: Grant
    Filed: October 15, 2019
    Date of Patent: February 22, 2022
    Assignee: Lightmatter, Inc.
    Inventors: Sukeshwar Kannan, Carl Ramey, Michael Gould, Nicholas C. Harris
  • Publication number: 20220043474
    Abstract: Systems and methods for performing matrix operations using a path-number balanced optical network are provided. The optical network is formed as an array including active optical components and passive optical components arranged at a substantially central location of the array. The optical network includes at least NM active optical components which are used to implement a first matrix of any size N×M by embedding the first matrix in a second matrix of a larger size. The optical network performs matrix-vector and matrix-matrix operations by propagating one or more pluralities of optical signals corresponding to an input vector through the optical network.
    Type: Application
    Filed: October 21, 2021
    Publication date: February 10, 2022
    Applicant: Lightmatter, Inc.
    Inventors: Darius Bunandar, Martin B.Z. Forsythe, Michael Gould, Tomo Lazovich
  • Publication number: 20220029730
    Abstract: Systems and methods for increasing throughput of a photonic processor by using photonic degrees of freedom (DOF) are provided. The photonic processor includes a multiplexer configured to multiplex, using at least one photonic DOF, multiple encoded optical signals into a multiplexed optical signal. The photonic processor also includes a detector coupled to an output of an optical path including the multiplexer, the detector being configured to generate a first current based on the multiplexed optical signal or a demultiplexed portion of the multiplexed optical signal. The photonic processor further includes a modulator coupled to and output of the detector, the modulator being configured to generate a second current by modulating the first current.
    Type: Application
    Filed: July 23, 2021
    Publication date: January 27, 2022
    Applicant: Lightmatter, Inc.
    Inventors: Darius Bunandar, Michael Gould, Nicholas C. Harris, Carl Ramey
  • Publication number: 20210405682
    Abstract: Hybrid analog-digital processing systems are described. An example of a hybrid analog-digital processing system includes photonic accelerator configured to perform matrix-vector multiplication using light. The photonic accelerator exhibits a frequency response having a first bandwidth (e.g., less than 3 GHz). The hybrid analog-digital processing system further includes a plurality of analog-to-digital converters (ADCs) coupled to the photonic accelerator, and a plurality of digital equalizers coupled to the plurality of ADCs, wherein the digital equalizers are configured to set a frequency response of the hybrid analog-digital processing system to a second bandwidth greater than the first bandwidth.
    Type: Application
    Filed: June 25, 2021
    Publication date: December 30, 2021
    Applicant: Lightmatter, Inc.
    Inventors: Michael Gould, Carl Ramey, Nicholas C. Harris, Darius Bunandar
  • Patent number: 11209856
    Abstract: Systems and methods for performing matrix operations using a path-number balanced optical network are provided. The optical network is formed as an array including active optical components and passive optical components arranged at a substantially central location of the array. The optical network includes at least NM active optical components which are used to implement a first matrix of any size N×M by embedding the first matrix in a second matrix of a larger size. The optical network performs matrix-vector and matrix-matrix operations by propagating one or more pluralities of optical signals corresponding to an input vector through the optical network.
    Type: Grant
    Filed: February 24, 2020
    Date of Patent: December 28, 2021
    Assignee: Lightmatter, Inc.
    Inventors: Darius Bunandar, Martin B. Z. Forsythe, Michael Gould, Tomo Lazovich
  • Patent number: 11196395
    Abstract: Low-noise optical differential receivers are described. Such differential receivers may include a differential amplifier having first and second inputs and first and second outputs, and four photodetectors. A first and a second of such photodetectors are coupled to the first input of the differential amplifier, and a third and a fourth of such photodetectors are coupled to the second input of the differential amplifier. The anode of the first photodetector and the cathode of the second photodetector are coupled to the first input of the differential amplifier. The cathode of the third photodetector and the anode of the fourth photodetector are coupled to the second input of the differential amplifier. The optical receiver may involve two stages of signal subtraction, which may significantly increase noise immunity.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: December 7, 2021
    Assignee: Lightmatter, Inc.
    Inventors: Nicholas C. Harris, Michael Gould, Omer Ozgur Yildirim
  • Publication number: 20210365240
    Abstract: Photonic processors are described. The photonic processors described herein are configured to perform matrix-matrix (e.g., matrix-vector) multiplication. Some embodiments relate to photonic processors arranged according to a dual-rail architecture, in which numeric values are encoded in the difference between a pair optical signals (e.g., in the difference between the powers of the optical signals). Relative to other architectures, these photonic processors exhibit increased immunity to noise. Some embodiments relate to photonic processors including modulatable detector-based multipliers. Modulatable detectors are detectors designed so that the photocurrent can be modulated according to an electrical control signal. Photonic processors designed using modulatable detector-based multipliers are significantly more compact than other types of photonic processors.
    Type: Application
    Filed: August 10, 2021
    Publication date: November 25, 2021
    Applicant: Lightmatter, Inc.
    Inventors: Nicholas C. Harris, Darius Bunandar, Michael Gould, Carl Ramey, Shashank Gupta, Carlos Dorta-Quinones
  • Patent number: 11169780
    Abstract: Photonic processors are described. The photonic processors described herein are configured to perform matrix-matrix (e.g., matrix-vector) multiplication. Some embodiments relate to photonic processors arranged according to a dual-rail architecture, in which numeric values are encoded in the difference between a pair optical signals (e.g., in the difference between the powers of the optical signals). Relative to other architectures, these photonic processors exhibit increased immunity to noise. Some embodiments relate to photonic processors including modulatable detector-based multipliers. Modulatable detectors are detectors designed so that the photocurrent can be modulated according to an electrical control signal. Photonic processors designed using modulatable detector-based multipliers are significantly more compact than other types of photonic processors.
    Type: Grant
    Filed: November 23, 2020
    Date of Patent: November 9, 2021
    Assignee: Lightmatter, Inc.
    Inventors: Nicholas C. Harris, Darius Bunandar, Michael Gould, Carl Ramey, Shashank Gupta, Carlos Dorta-Quinones
  • Publication number: 20210333818
    Abstract: Photonic processors are described. The photonic processors described herein are configured to perform matrix multiplications (e.g., matrix vector multiplications). Matrix multiplications are broken down in scalar multiplications and scalar additions. Some embodiments relate to devices for performing scalar additions in the optical domain. One optical adder, for example, includes an interferometer having a plurality of phase shifters and a coherent detector. Leveraging the high-speed characteristics of these optical adders, some processors are sufficiently fast to support clocks in the tens of gigahertz of frequency, which represent a significant improvement over conventional electronic processors.
    Type: Application
    Filed: April 26, 2021
    Publication date: October 28, 2021
    Applicant: Lightmatter, Inc.
    Inventors: Nicholas C. Harris, Anthony Kopa, Carl Ramey, Darius Bunandar, Michael Gould
  • Publication number: 20210278590
    Abstract: Described herein are photonic communication platforms that can overcome the memory bottleneck problem, thereby enabling scaling of memory capacity and bandwidth well beyond what is possible with conventional computing systems. Some embodiments provide photonic communication platforms that involve use of photonic modules. Each photonic module includes programmable photonic circuits for placing the module in optical communication with other modules based on the needs of a particular application. The architecture developed by the inventors relies on the use of common photomask sets (or at least one common photomask) to fabricate multiple photonic modules in a single wafer. Photonic modules in multiple wafers can be linked together into a communication platform using optical or electronic means.
    Type: Application
    Filed: May 6, 2021
    Publication date: September 9, 2021
    Applicant: Lightmatter, Inc.
    Inventors: Nicholas C. Harris, Carl Ramey, Michael Gould, Thomas Graham, Darius Bunandar, Ryan Braid, Mykhailo Tymchenko
  • Patent number: 11093215
    Abstract: Photonic processors are described. The photonic processors described herein are configured to perform matrix-matrix (e.g., matrix-vector) multiplication. Some embodiments relate to photonic processors arranged according to a dual-rail architecture, in which numeric values are encoded in the difference between a pair optical signals (e.g., in the difference between the powers of the optical signals). Relative to other architectures, these photonic processors exhibit increased immunity to noise. Some embodiments relate to photonic processors including modulatable detector-based multipliers. Modulatable detectors are detectors designed so that the photocurrent can be modulated according to an electrical control signal. Photonic processors designed using modulatable detector-based multipliers are significantly more compact than other types of photonic processors.
    Type: Grant
    Filed: November 20, 2020
    Date of Patent: August 17, 2021
    Assignee: Lightmatter, Inc.
    Inventors: Nicholas C. Harris, Darius Bunandar, Michael Gould, Carl Ramey, Shashank Gupta, Carlos Dorta-Quinones
  • Patent number: 11036002
    Abstract: Described herein are photonic communication platforms that can overcome the memory bottleneck problem, thereby enabling scaling of memory capacity and bandwidth well beyond what is possible with conventional computing systems. Some embodiments provide photonic communication platforms that involve use of photonic modules. Each photonic module includes programmable photonic circuits for placing the module in optical communication with other modules based on the needs of a particular application. The architecture developed by the inventors relies on the use of common photomask sets (or at least one common photomask) to fabricate multiple photonic modules in a single wafer. Photonic modules in multiple wafers can be linked together into a communication platform using optical or electronic means.
    Type: Grant
    Filed: March 5, 2020
    Date of Patent: June 15, 2021
    Assignee: Lightmatter, Inc.
    Inventors: Nicholas C. Harris, Carl Ramey, Michael Gould, Thomas Graham, Darius Bunandar, Ryan Braid, Mykhailo Tymchenko
  • Publication number: 20210157547
    Abstract: Photonic processors are described. The photonic processors described herein are configured to perform matrix-matrix (e.g., matrix-vector) multiplication. Some embodiments relate to photonic processors arranged according to a dual-rail architecture, in which numeric values are encoded in the difference between a pair optical signals (e.g., in the difference between the powers of the optical signals). Relative to other architectures, these photonic processors exhibit increased immunity to noise. Some embodiments relate to photonic processors including modulatable detector-based multipliers. Modulatable detectors are detectors designed so that the photocurrent can be modulated according to an electrical control signal. Photonic processors designed using modulatable detector-based multipliers are significantly more compact than other types of photonic processors.
    Type: Application
    Filed: November 20, 2020
    Publication date: May 27, 2021
    Applicant: Lightmatter, Inc.
    Inventors: Darius Bunandar, Nicholas C. Harris, Michael Gould, Carl Ramey, Shashank Gupta, Carlos Dorta-Quinones
  • Publication number: 20210157211
    Abstract: The techniques described herein relate to methods and apparatus for interferometric modulation. An apparatus includes an interferometric device comprising a first optical path and a second optical path, and at least one Franz-Keldysh (FK) modulator disposed in either the first optical path or the second optical path of the interferometric device. The interferometric device receives input light, wherein a first portion of the input light travels along the first optical path of the interferometric device, and a second portion of the input light travels along the second optical path of the interferometric device. The FK modulator modulates an intensity of either the first portion of the input light or the second portion of the input light.
    Type: Application
    Filed: November 19, 2020
    Publication date: May 27, 2021
    Applicant: Lightmatter, Inc.
    Inventors: Nicholas C. Harris, Michael Gould, Mykhailo Tymchenko, Weilu Gao, Shashank Gupta