Patents by Inventor Michael Gould
Michael Gould has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12206220Abstract: Photonic processors are described. The photonic processors described herein are configured to perform matrix multiplications (e.g., matrix vector multiplications). Matrix multiplications are broken down in scalar multiplications and scalar additions. Some embodiments relate to devices for performing scalar additions in the optical domain. One optical adder, for example, includes an interferometer having a plurality of phase shifters and a coherent detector. Leveraging the high-speed characteristics of these optical adders, some processors are sufficiently fast to support clocks in the tens of gigahertz of frequency, which represent a significant improvement over conventional electronic processors.Type: GrantFiled: April 26, 2021Date of Patent: January 21, 2025Assignee: Lightmatter, Inc.Inventors: Nicholas C. Harris, Anthony Kopa, Carl Ramey, Darius Bunandar, Michael Gould
-
Patent number: 12124082Abstract: Described herein are photonic communication platforms that can overcome the memory bottleneck problem, thereby enabling scaling of memory capacity and bandwidth well beyond what is possible with conventional computing systems. Some embodiments provide photonic communication platforms that involve use of photonic modules. Each photonic module includes programmable photonic circuits for placing the module in optical communication with other modules based on the needs of a particular application. The architecture developed by the inventors relies on the use of common photomask sets (or at least one common photomask) to fabricate multiple photonic modules in a single wafer. Photonic modules in multiple wafers can be linked together into a communication platform using optical or electronic means.Type: GrantFiled: August 24, 2023Date of Patent: October 22, 2024Assignee: Lightmatter, Inc.Inventors: Nicholas C. Harris, Carl Ramey, Michael Gould, Thomas Graham, Darius Bunandar, Ryan Braid, Mykhailo Tymchenko
-
Patent number: 12124081Abstract: Described herein are photonic communication platforms that can overcome the memory bottleneck problem, thereby enabling scaling of memory capacity and bandwidth well beyond what is possible with conventional computing systems. Some embodiments provide photonic communication platforms that involve use of photonic modules. Each photonic module includes programmable photonic circuits for placing the module in optical communication with other modules based on the needs of a particular application. The architecture developed by the inventors relies on the use of common photomask sets (or at least one common photomask) to fabricate multiple photonic modules in a single wafer. Photonic modules in multiple wafers can be linked together into a communication platform using optical or electronic means.Type: GrantFiled: July 21, 2023Date of Patent: October 22, 2024Assignee: Lightmatter, Inc.Inventors: Nicholas C. Harris, Carl Ramey, Michael Gould, Thomas Graham, Darius Bunandar, Ryan Braid, Mykhailo Tymchenko
-
Publication number: 20240310867Abstract: Hybrid analog-digital processing systems are described. An example of a hybrid analog-digital processing system includes photonic accelerator configured to perform matrix-vector multiplication using light. The photonic accelerator exhibits a frequency response having a first bandwidth (e.g., less than 3 GHz). The hybrid analog-digital processing system further includes a plurality of analog-to-digital converters (ADCs) coupled to the photonic accelerator, and a plurality of digital equalizers coupled to the plurality of ADCs, wherein the digital equalizers are configured to set a frequency response of the hybrid analog-digital processing system to a second bandwidth greater than the first bandwidth.Type: ApplicationFiled: May 28, 2024Publication date: September 19, 2024Applicant: Lightmatter, Inc.Inventors: Michael Gould, Carl Ramey, Nicholas C. Harris, Darius Bunandar
-
Patent number: 12092867Abstract: Described herein are photonic communication platforms that can overcome the memory bottleneck problem, thereby enabling scaling of memory capacity and bandwidth well beyond what is possible with conventional computing systems. Some embodiments provide photonic communication platforms that involve use of photonic modules. Each photonic module includes programmable photonic circuits for placing the module in optical communication with other modules based on the needs of a particular application. The architecture developed by the inventors relies on the use of common photomask sets (or at least one common photomask) to fabricate multiple photonic modules in a single wafer. Photonic modules in multiple wafers can be linked together into a communication platform using optical or electronic means.Type: GrantFiled: December 1, 2023Date of Patent: September 17, 2024Assignee: Lightmatter, Inc.Inventors: Nicholas C. Harris, Carl Ramey, Michael Gould, Thomas Graham, Darius Bunandar, Ryan Braid, Mykhailo Tymchenko
-
Patent number: 12092866Abstract: Described herein are photonic communication platforms that can overcome the memory bottleneck problem, thereby enabling scaling of memory capacity and bandwidth well beyond what is possible with conventional computing systems. Some embodiments provide photonic communication platforms that involve use of photonic modules. Each photonic module includes programmable photonic circuits for placing the module in optical communication with other modules based on the needs of a particular application. The architecture developed by the inventors relies on the use of common photomask sets (or at least one common photomask) to fabricate multiple photonic modules in a single wafer. Photonic modules in multiple wafers can be linked together into a communication platform using optical or electronic means.Type: GrantFiled: August 24, 2023Date of Patent: September 17, 2024Assignee: Lightmatter, Inc.Inventors: Nicholas C. Harris, Carl Ramey, Michael Gould, Thomas Graham, Darius Bunandar, Ryan Braid, Mykhailo Tymchenko
-
Patent number: 12038777Abstract: Hybrid analog-digital processing systems are described. An example of a hybrid analog-digital processing system includes photonic accelerator configured to perform matrix-vector multiplication using light. The photonic accelerator exhibits a frequency response having a first bandwidth (e.g., less than 3 GHz). The hybrid analog-digital processing system further includes a plurality of analog-to-digital converters (ADCs) coupled to the photonic accelerator, and a plurality of digital equalizers coupled to the plurality of ADCs, wherein the digital equalizers are configured to set a frequency response of the hybrid analog-digital processing system to a second bandwidth greater than the first bandwidth.Type: GrantFiled: June 25, 2021Date of Patent: July 16, 2024Assignee: Lightmatter, Inc.Inventors: Michael Gould, Carl Ramey, Nicholas C. Harris, Darius Bunandar
-
Patent number: 12038604Abstract: Described herein are photonic communication platforms that can overcome the memory bottleneck problem, thereby enabling scaling of memory capacity and bandwidth well beyond what is possible with conventional computing systems. Some embodiments provide photonic communication platforms that involve use of photonic modules. Each photonic module includes programmable photonic circuits for placing the module in optical communication with other modules based on the needs of a particular application. The architecture developed by the inventors relies on the use of common photomask sets (or at least one common photomask) to fabricate multiple photonic modules in a single wafer. Photonic modules in multiple wafers can be linked together into a communication platform using optical or electronic means.Type: GrantFiled: December 1, 2023Date of Patent: July 16, 2024Assignee: Lightmatter, Inc.Inventors: Nicholas C. Harris, Carl Ramey, Michael Gould, Thomas Graham, Darius Bunandar, Ryan Braid, Mykhailo Tymchenko
-
Publication number: 20240219635Abstract: Described herein are photonic communication platforms that can overcome the memory bottleneck problem, thereby enabling scaling of memory capacity and bandwidth well beyond what is possible with conventional computing systems. Some embodiments provide photonic communication platforms that involve use of photonic modules. Each photonic module includes programmable photonic circuits for placing the module in optical communication with other modules based on the needs of a particular application. The architecture developed by the inventors relies on the use of common photomask sets (or at least one common photomask) to fabricate multiple photonic modules in a single wafer. Photonic modules in multiple wafers can be linked together into a communication platform using optical or electronic means.Type: ApplicationFiled: March 15, 2024Publication date: July 4, 2024Applicant: Lightmatter, Inc.Inventors: Nicholas C. Harris, Carl Ramey, Michael Gould, Thomas Graham, Darius Bunandar, Ryan Braid, Mykhailo Tymchenko
-
Publication number: 20240187111Abstract: Systems and methods for performing signed matrix operations using a linear photonic processor are provided. The linear photonic processor is formed as an array of first amplitude modulators and second amplitude modulators, the first amplitude modulators configured to encode elements of a vector into first optical signals and the second amplitude modulators configured to encode a product between the vector elements and matrix elements into second optical signals. An apparatus may be used to implement a signed value of an output of the linear processor. The linear photonic processor may be configured to perform matrix-vector and/or matrix-matrix operations.Type: ApplicationFiled: February 14, 2024Publication date: June 6, 2024Applicant: Lightmatter, Inc.Inventors: Darius Bunandar, Nicholas C. Harris, Michael Gould, Carl Ramey, Tomo Lazovich
-
Publication number: 20240178923Abstract: Described herein are techniques for intra-chip communication within tiled photonic interposers. A photonic interposer may rely on a combination of photonic lanes and electric lanes. For example, a photonic interposer may comprise a photonic integrated circuit (PIC) lithographically patterned with an array of photonic tiles, each photonic tile comprising an on-chip communication unit. The array of photonic tiles is arranged in rows and columns. A plurality of electric lanes place the on-chip communication units of photonic tiles of different rows in electrical communication with one another. A plurality of photonic lanes place the on-chip communication units of photonic tiles of different columns in optical communication with one another.Type: ApplicationFiled: November 22, 2023Publication date: May 30, 2024Applicant: Lightmatter, Inc.Inventors: Darius Bunandar, Mykhailo Tymchenko, Shashank Gupta, Michael Gould, Alexander Sludds, Carlos Dorta-Quinones, Anthony Kopa, Adam Mendrela, Clifford Chao, Hamid Eslampour, Ritesh Jain, Chain-min Richard Ho, Nicholas C. Harris
-
Publication number: 20240111094Abstract: Described herein are photonic communication platforms that can overcome the memory bottleneck problem, thereby enabling scaling of memory capacity and bandwidth well beyond what is possible with conventional computing systems. Some embodiments provide photonic communication platforms that involve use of photonic modules. Each photonic module includes programmable photonic circuits for placing the module in optical communication with other modules based on the needs of a particular application. The architecture developed by the inventors relies on the use of common photomask sets (or at least one common photomask) to fabricate multiple photonic modules in a single wafer. Photonic modules in multiple wafers can be linked together into a communication platform using optical or electronic means.Type: ApplicationFiled: December 1, 2023Publication date: April 4, 2024Applicant: Lightmatter, Inc.Inventors: Nicholas C. Harris, Carl Ramey, Michael Gould, Thomas Graham, Darius Bunandar, Ryan Braid, Mykhailo Tymchenko
-
Publication number: 20240103219Abstract: Described herein are photonic communication platforms that can overcome the memory bottleneck problem, thereby enabling scaling of memory capacity and bandwidth well beyond what is possible with conventional computing systems. Some embodiments provide photonic communication platforms that involve use of photonic modules. Each photonic module includes programmable photonic circuits for placing the module in optical communication with other modules based on the needs of a particular application. The architecture developed by the inventors relies on the use of common photomask sets (or at least one common photomask) to fabricate multiple photonic modules in a single wafer. Photonic modules in multiple wafers can be linked together into a communication platform using optical or electronic means.Type: ApplicationFiled: December 1, 2023Publication date: March 28, 2024Applicant: Lightmatter, Inc.Inventors: Nicholas C. Harris, Carl Ramey, Michael Gould, Thomas Graham, Darius Bunandar, Ryan Braid, Mykhailo Tymchenko
-
Patent number: 11936434Abstract: Systems and methods for performing signed matrix operations using a linear photonic processor are provided. The linear photonic processor is formed as an array of first amplitude modulators and second amplitude modulators, the first amplitude modulators configured to encode elements of a vector into first optical signals and the second amplitude modulators configured to encode a product between the vector elements and matrix elements into second optical signals. An apparatus may be used to implement a signed value of an output of the linear processor. The linear photonic processor may be configured to perform matrix-vector and/or matrix-matrix operations.Type: GrantFiled: April 26, 2023Date of Patent: March 19, 2024Assignee: Lightmatter, Inc.Inventors: Darius Bunandar, Nicholas C. Harris, Michael Gould, Carl Ramey, Tomo Lazovich
-
Publication number: 20240063936Abstract: Systems and methods for increasing throughput of a photonic processor by using photonic degrees of freedom (DOF) are provided. The photonic processor includes a multiplexer configured to multiplex, using at least one photonic DOF, multiple encoded optical signals into a multiplexed optical signal. The photonic processor also includes a detector coupled to an output of an optical path including the multiplexer, the detector being configured to generate a first current based on the multiplexed optical signal or a demultiplexed portion of the multiplexed optical signal. The photonic processor further includes a modulator coupled to and output of the detector, the modulator being configured to generate a second current by modulating the first current.Type: ApplicationFiled: May 22, 2023Publication date: February 22, 2024Applicant: Lightmatter, Inc.Inventors: Darius Bunandar, Michael Gould, Nicholas C. Harris, Carl Ramey
-
Patent number: 11860413Abstract: Described herein are photonic communication platforms that can overcome the memory bottleneck problem, thereby enabling scaling of memory capacity and bandwidth well beyond what is possible with conventional computing systems. Some embodiments provide photonic communication platforms that involve use of photonic modules. Each photonic module includes programmable photonic circuits for placing the module in optical communication with other modules based on the needs of a particular application. The architecture developed by the inventors relies on the use of common photomask sets (or at least one common photomask) to fabricate multiple photonic modules in a single wafer. Photonic modules in multiple wafers can be linked together into a communication platform using optical or electronic means.Type: GrantFiled: November 29, 2022Date of Patent: January 2, 2024Assignee: Lightmatter, Inc.Inventors: Nicholas C. Harris, Carl Ramey, Michael Gould, Thomas Graham, Darius Bunandar, Ryan Braid, Mykhailo Tymchenko
-
Publication number: 20230408764Abstract: Described herein are photonic communication platforms that can overcome the memory bottleneck problem, thereby enabling scaling of memory capacity and bandwidth well beyond what is possible with conventional computing systems. Some embodiments provide photonic communication platforms that involve use of photonic modules. Each photonic module includes programmable photonic circuits for placing the module in optical communication with other modules based on the needs of a particular application. The architecture developed by the inventors relies on the use of common photomask sets (or at least one common photomask) to fabricate multiple photonic modules in a single wafer. Photonic modules in multiple wafers can be linked together into a communication platform using optical or electronic means.Type: ApplicationFiled: August 24, 2023Publication date: December 21, 2023Applicant: Lightmatter, Inc.Inventors: NICHOLAS C. HARRIS, Carl Ramey, Michael Gould, Thomas Graham, Darius Bunandar, Ryan Braid, Mykhailo Tymchenko
-
Publication number: 20230400632Abstract: Described herein are photonic communication platforms that can overcome the memory bottleneck problem, thereby enabling scaling of memory capacity and bandwidth well beyond what is possible with conventional computing systems. Some embodiments provide photonic communication platforms that involve use of photonic modules. Each photonic module includes programmable photonic circuits for placing the module in optical communication with other modules based on the needs of a particular application. The architecture developed by the inventors relies on the use of common photomask sets (or at least one common photomask) to fabricate multiple photonic modules in a single wafer. Photonic modules in multiple wafers can be linked together into a communication platform using optical or electronic means.Type: ApplicationFiled: August 24, 2023Publication date: December 14, 2023Applicant: Lightmatter, Inc.Inventors: Nicholas C. Harris, Carl Ramey, Michael Gould, Thomas Graham, Darius Bunandar, Ryan Braid, Mykhailo Tymchenko
-
Publication number: 20230358957Abstract: Described herein are photonic communication platforms that can overcome the memory bottleneck problem, thereby enabling scaling of memory capacity and bandwidth well beyond what is possible with conventional computing systems. Some embodiments provide photonic communication platforms that involve use of photonic modules. Each photonic module includes programmable photonic circuits for placing the module in optical communication with other modules based on the needs of a particular application. The architecture developed by the inventors relies on the use of common photomask sets (or at least one common photomask) to fabricate multiple photonic modules in a single wafer. Photonic modules in multiple wafers can be linked together into a communication platform using optical or electronic means.Type: ApplicationFiled: July 21, 2023Publication date: November 9, 2023Applicant: Lightmatter, Inc.Inventors: Nicholas C. Harris, Carl Ramey, Michael Gould, Thomas Graham, Darius Bunandar, Ryan Braid, Mykhailo Tymchenko
-
Publication number: 20230353252Abstract: Systems and methods for performing signed matrix operations using a linear photonic processor are provided. The linear photonic processor is formed as an array of first amplitude modulators and second amplitude modulators, the first amplitude modulators configured to encode elements of a vector into first optical signals and the second amplitude modulators configured to encode a product between the vector elements and matrix elements into second optical signals. An apparatus may be used to implement a signed value of an output of the linear processor. The linear photonic processor may be configured to perform matrix-vector and/or matrix-matrix operations.Type: ApplicationFiled: April 26, 2023Publication date: November 2, 2023Applicant: Lightmatter, Inc.Inventors: Darius Bunandar, Nicholas C. Harris, Michael Gould, Carl Ramey, Tomo Lazovich