Patents by Inventor Michael Huang

Michael Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130202617
    Abstract: The present invention relates to a novel, isolated and purified hemorrhagic feline calicivirus FCV-DD1. The invention further embraces monovalent and multivalent vaccines containing the new FCV-DD1 strain. In addition, the invention encompasses methods of protecting felines against infection or preventing disease caused by feline calicivirus or in addition to other pathogens that comprises administering to the felines an immunologically effective amount of the monovalent and multivalent vaccines described herein. Also, the invention concerns methods for diagnosing or detecting the hemorrhagic feline calicivirus in a susceptible host, asymptomatic carrier and the like by detecting the presence of feline calicivirus FCV-DD1 or antibodies raised or produced against feline calicivirus FCV-DD1 antigen.
    Type: Application
    Filed: March 15, 2013
    Publication date: August 8, 2013
    Applicant: Boehringer Ingelheim Vetmedica, Inc.
    Inventors: Chengjin Michael HUANG, Jennifer Hess
  • Patent number: 8448496
    Abstract: This invention provides methods and devices to measure physical characteristics of sample fluids. Samples are introduced into a sample chamber in contact with a mechanically oscillating working member. The vibrations are received by a piezoelectric sensor transducer and correlated to a sample characteristic, such as viscosity or density. The devices include a sample chamber in contact with one or more working members actuated by a piezoelectric actuator and/or monitored by a piezoelectric sensor.
    Type: Grant
    Filed: September 22, 2010
    Date of Patent: May 28, 2013
    Assignee: Micropoint Bioscience Inc.
    Inventors: Michael Huang, Mengya Wu, Mengyou Wu
  • Publication number: 20110203367
    Abstract: This invention provides methods and devices to measure physical characteristics of sample fluids. Samples are introduced into a sample chamber in contact with a mechanically oscillating working member. The vibrations are received by a piezoelectric sensor transducer and correlated to a sample characteristic, such as viscosity or density. The devices include a sample chamber in contact with one or more working members actuated by a piezoelectric actuator and/or monitored by a piezoelectric sensor.
    Type: Application
    Filed: September 22, 2010
    Publication date: August 25, 2011
    Applicant: MicroPoint Bioscience Inc.
    Inventors: Michael Huang, Mengya Wu, Mengyou Wu
  • Publication number: 20110109325
    Abstract: This invention provides methods and devices for detecting the viscosity and conductivity of a conductive fluid sample. A sample fluid can be received into a sample chamber between a field inductor and sensor inductor. Electromagnetic fields generated by the field inductor can be modulated due to the counter-emf induced in the sample. The modulations can be detected by the sensor inductor and correlated to electric parameters in the fluid.
    Type: Application
    Filed: September 9, 2010
    Publication date: May 12, 2011
    Applicant: MicroPoint Bioscience Inc.
    Inventors: Michael Huang, Mengya Wu, Mengyou Wu
  • Patent number: 7834264
    Abstract: One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as “nanowires”, include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: November 16, 2010
    Assignee: The Regents of the University of California
    Inventors: Arun Majumdar, Ali Shakouri, Timothy D. Sands, Peidong Yang, Samuel S. Mao, Richard E. Russo, Henning Feick, Eicke R. Weber, Hannes Kind, Michael Huang, Haoquan Yan, Yiying Wu, Rong Fan
  • Patent number: 7718201
    Abstract: The present invention is directed to plant based formulations for improving liver health by protecting the liver from alcohol and chemical insults and/or by inducing phase II enzymes. Formulations according to the present invention include wasabi root fiber powder, artichoke leaf extract, asparagus dehydrate, kudzu root extract, oregano extract, schisandra berry extract, notoginseng (ethanol extract of Panax notoginseng root), sanchi (water extracts from Panax notoginseng root), Gegen root extract (Pueraria omeiensis), spinach dehydrate, or combinations thereof.
    Type: Grant
    Filed: July 16, 2008
    Date of Patent: May 18, 2010
    Assignee: Access Business Group International LLC
    Inventors: Chioma Jane Ikonte, Michael Huang, Cherie L. Hacker, Silvia R. da Costa, Paul D. Johnson, Amitabh Chandra, Christine M. Paganelli, Ruo G. Huang
  • Publication number: 20100003516
    Abstract: One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as “nanowires”, include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).
    Type: Application
    Filed: June 19, 2009
    Publication date: January 7, 2010
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Arun Majumdar, Ali Shakouri, Timothy D. Sands, Peidong Yang, Samuel S. Mao, Richard E. Russo, Henning Feick, Eicke R. Weber, Hannes Kind, Michael Huang, Haoquan Yan, Yiying Wu, Rong Fan
  • Patent number: 7569941
    Abstract: One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as “nanowires”, include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: August 4, 2009
    Assignee: The Regents of the University of California
    Inventors: Arun Majumdar, Ali Shakouri, Timothy D. Sands, Peidong Yang, Samuel S. Mao, Richard E. Russo, Henning Feick, Eicke R. Weber, Hannes Kind, Michael Huang, Haoquan Yan, Yiying Wu, Rong Fan
  • Patent number: 7569847
    Abstract: One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as “nanowires”, include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).
    Type: Grant
    Filed: January 20, 2005
    Date of Patent: August 4, 2009
    Assignee: The Regents of the University of California
    Inventors: Arun Majumdar, Ali Shakouri, Timothy D. Sands, Peidong Yang, Samuel S. Mao, Richard E. Russo, Henning Feick, Eicke R. Weber, Hannes Kind, Michael Huang, Haoquan Yan, Yiying Wu, Rong Fan
  • Publication number: 20090011054
    Abstract: The present invention is directed to plant based formulations for improving liver health by protecting the liver from alcohol and chemical insults and/or by inducing phase II enzymes. Formulations according to the present invention include wasabi root fiber powder, artichoke leaf extract, asparagus dehydrate, kudzu root extract, oregano extract, schisandra berry extract, notoginseng (ethanol extract of Panax notoginseng root), sanchi (water extracts from Panax notoginseng root), Gegen root extract (Pueraria omeiensis), spinach dehydrate, or combinations thereof.
    Type: Application
    Filed: July 16, 2008
    Publication date: January 8, 2009
    Inventors: Chioma Jane Ikonte, Michael Huang, Cherie L. Hacker, Silvia R. da Costa, Paul D. Johnson, Amitabh Chandra, Christine M. Paganelli, Ruo G. Huang
  • Patent number: 7472803
    Abstract: An automated dispensing assembly includes a base, and a shuttle mounted in the base and movable under automated control between a loading position and a dispensing position. The shuttle includes a cavity configured to carry an object, such as cover. The depth of the cavity in the shuttle is approximately the same (or less) as the thickness of one of the objects. A storage module is mounted proximate the shuttle. The storage module is configured to store a plurality of objects and includes an opening exposing the next object to be dispensed. The cavity is positioned adjacent the opening in the storage module in the loading position and an edge of the cavity separates the object to be dispensed from the other objects in the storage module as the shuttle moves to the dispensing position.
    Type: Grant
    Filed: February 25, 2005
    Date of Patent: January 6, 2009
    Assignee: BioGenex Laboratories, Inc.
    Inventors: Krishan L. Kalra, Thomas Maxwell, Qi Cao, Michael Huang, Shahin Iqbal
  • Patent number: 7419689
    Abstract: The present invention is directed to plant based formulations for improving liver health by protecting the liver from alcohol and chemical insults and/or by inducing phase II enzymes. Formulations according to the present invention include wasabi root fiber powder, artichoke leaf extract, asparagus dehydrate, kudzu root extract, oregano extract, schisandra berry extract, notoginseng (ethanol extract of Panax notoginseng root), sanchi (water extracts from Panax notoginseng root), Gegen root extract (Pueraria omeiensis), spinach dehydrate, or combinations thereof.
    Type: Grant
    Filed: November 15, 2005
    Date of Patent: September 2, 2008
    Assignee: Access Business Group International LLC.
    Inventors: Chioma Jane Ikonte, Michael Huang, Cherie L. Hacker, Silvia R. da Costa, Paul D. Johnson, Amitabh Chandra, Christine M. Paganelli, Ruo G. Huang
  • Publication number: 20080092938
    Abstract: One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as “nanowires”, include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).
    Type: Application
    Filed: December 22, 2006
    Publication date: April 24, 2008
    Inventors: Arun Majumdar, Ali Shakouri, Timothy Sands, Peidong Yang, Samuel Mao, Richard Russo, Henning Feick, Eicke Weber, Hannes Kind, Michael Huang, Haoquan Yan, Yiying Wu, Rong Fan
  • Patent number: 7348034
    Abstract: The present invention relates to formulations of ingredients that are useful for improving the appearance, texture and/or moisture of skin. In particular, the formulations of the present invention stimulate collagen, elastin, and lipid synthesis and/or inhibit or minimize the loss of collagen, elastin, and lipids in the skin. Additionally, the formulations of the present invention inhibit matrix metalloproteases, such as MMP-1, MMP-9, collagenase, or elastase.
    Type: Grant
    Filed: March 7, 2005
    Date of Patent: March 25, 2008
    Assignee: Access Business Group International LLC
    Inventors: Mary A. Murray, Aaron W. Crawford, David J. Fast, Dora Dong, Michael Huang, Lynne Marie Connor
  • Publication number: 20070164270
    Abstract: One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as “nanowires”, include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).
    Type: Application
    Filed: December 22, 2006
    Publication date: July 19, 2007
    Inventors: Arun Majumdar, Ali Shakouri, Timothy Sands, Peidong Yang, Samuel Mao, Richard Russo, Henning Feick, Eicke Weber, Hannes Kind, Michael Huang, Haoquan Yan, Yiying Wu, Rong Fan
  • Publication number: 20070153860
    Abstract: A vertical cavity surface emitting laser (VCSEL) is described using a sub-wavelength grating (SWG) structure that has a very broad reflection spectrum and very high reflectivity. The grating comprises segments of high and low refractive index materials with an index differential between the high and low index materials. By way of example, a SWG reflective structure is disposed over a low index cavity region and above another reflective layer (either SWG or DBR). In one embodiment, the SWG structure is movable, such as according to MEMS techniques, in relation to the opposing reflector to provide wavelength selective tuning. The SWG-VCSEL design is scalable to form the optical cavities for a range of SWG-VCSELs at different wavelengths, and wavelength ranges.
    Type: Application
    Filed: May 19, 2006
    Publication date: July 5, 2007
    Inventors: Connie Chang-Hasnain, Michael Huang, Ye Zhou, Carlos Mateus
  • Patent number: D547103
    Type: Grant
    Filed: January 31, 2006
    Date of Patent: July 24, 2007
    Inventor: Michael Huang
  • Patent number: D551892
    Type: Grant
    Filed: October 21, 2005
    Date of Patent: October 2, 2007
    Assignee: King Bird, Inc.
    Inventor: Michael Huang
  • Patent number: D551893
    Type: Grant
    Filed: October 21, 2005
    Date of Patent: October 2, 2007
    Assignee: King Bird, Inc.
    Inventor: Michael Huang
  • Patent number: D552400
    Type: Grant
    Filed: August 4, 2006
    Date of Patent: October 9, 2007
    Inventor: Michael Huang