Patents by Inventor Michael J. Kane

Michael J. Kane has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10617873
    Abstract: Cardiac activity of the heart can be sensed using, for example, one or more leadless cardiac pacemakers (LCPs) that are implanted in a close proximity to the heart. Sensing cardiac activity by the one or more leadless cardiac pacemakers (LCPs) can help the system in determining an occurrence of cardiac arrhythmia. For treatment purposes, electrical stimulation therapy, for example anti-tachyarrhythmia pacing (ATP) therapy, can be delivered by at least one of the devices of the system. Such therapy can help treat the detected cardiac arrhythmia. In some instances, one of the leadless cardiac pacemakers can instruct one or more of the other devices to assist in providing pacing therapy. In some instances, one of the leadless cardiac pacemakers can instruct one or more of the other devices to temporarily stop providing therapy or to simply shut down while another device provides therapy.
    Type: Grant
    Filed: January 8, 2015
    Date of Patent: April 14, 2020
    Assignee: Cardiac Packemakers, Inc.
    Inventors: Jeffrey E. Stahmann, William J. Linder, Howard D. Simms, Jr., Keith R. Maile, Michael J. Kane
  • Patent number: 10617874
    Abstract: Systems, devices, and methods for pacing a heart of a patient are disclosed. An illustrative method may include determining a motion level of the patient using a motion sensor of an implantable medical device secured relative to a patient's heart, and setting a pacing rate based at least in part on the patient's motion level. The patient's motion level may be determined by, for example, comparing the motion level sensed by the motion sensor during a current heart beat to a motion level associated with one or more previous heart beats. Noise may occur in the motion level measurements during those heart beats that transition between an intrinsically initiated heart beat and pace initiated heart beat. Various techniques may be applied to the motion level measurements to help reduce the effect of such noise.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: April 14, 2020
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Michael J. Kane, Paul Huelskamp
  • Publication number: 20200094002
    Abstract: A system is disclosed for performing an endoscopic surgical procedure in a surgical cavity, which includes a multi-modal gas delivery device including a primary gas circulation pump, a secondary gas circulation pump and an insufflation subunit, and an interface plate adapted and configured to engage with the multi-modal gas delivery device and including a connector and a filter seat corresponding to five different lumens, each of which provides a different functionality.
    Type: Application
    Filed: September 21, 2018
    Publication date: March 26, 2020
    Inventors: Mikiya Silver, Michael J. Kane, Michael J. Augelli
  • Patent number: 10589101
    Abstract: Systems, methods, and devices for determining occurrences of a tamponade condition are disclosed. One exemplary method includes monitoring an accelerometer signal of a leadless cardiac pacemaker attached to a heart wall, determining if a tamponade condition of the patient's heart is indicated based at least in part on the monitored accelerometer signal, and in response to determining that the tamponade condition is indicated, providing a notification of the tamponade condition for use by a physician to take corrective action.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: March 17, 2020
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Michael J. Kane, Allan Charles Shuros, Brian L. Schmidt, Keith R. Maile, Benjamin J. Haasl
  • Patent number: 10583301
    Abstract: An implantable medical device (IMD) may be deployed within a patient's right atrium at a location near a right atrial appendage of the patient's heart in order to pace the patient's heart and/or to sense electrical activity within the patient's heart. In some cases, an IMD may be implanted within the right atrial appendage. The IMD may include an expandable anchoring mechanism configured to secure the IMD in place.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: March 10, 2020
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Benjamin J. Haasl, Michael J. Kane, Arthur J. Foster, Lance Eric Juffer, Michael J. Johnson, Keith R. Maile, Brian L. Schmidt, Brendan Early Koop
  • Patent number: 10556119
    Abstract: An implantable pulse generator includes a device housing containing pulse generator circuitry and a header connected to the device housing. The header includes a core assembly defining first and second lead bore cavities sized for receiving terminal pins of leads, first and second labels, and an outer layer. The first label is printed onto a surface of the core assembly proximate the first lead bore cavity and includes a first color. The second label is printed onto the surface of the core assembly proximate the second lead bore cavity and includes a second color different from the first color. The outer layer is overmolded over the core assembly so as to encapsulate the first and second labels and to allow access to the first and second lead bore cavities.
    Type: Grant
    Filed: August 4, 2017
    Date of Patent: February 11, 2020
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: John M. Edgell, Keith R. Maile, William J. Linder, Arthur J. Foster, Bryan J. Swackhamer, Michael J. Kane, John Reardon
  • Patent number: 10532214
    Abstract: Systems and methods for implantable medical devices and headers are described. In an example, an implantable medical device includes a device container including an electronic module within the device container. A modular header core includes a header core module including at least one bore hole configured to receive a lead, an antenna attachment module coupled to the header core, and an antenna engaged with the antenna attachment module. The antenna attachment module is configured to locate the antenna in a selected position with respect to the header core module.
    Type: Grant
    Filed: July 11, 2016
    Date of Patent: January 14, 2020
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Michael J. Kane, John O'Rourke
  • Publication number: 20200001092
    Abstract: An implantable medical device (IMD) that includes a housing, a first electrode secured relative to the housing, a second electrode secured relative to the housing, and a gyroscope secured relative to the housing. The IMD may include circuitry in the housing in communication with the first electrode, the second electrode, and the gyroscope. The circuitry may be configured to determine and store a plurality of torsion data measurements, from which a representation of a twist profile may be determined.
    Type: Application
    Filed: August 8, 2019
    Publication date: January 2, 2020
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: Bin Mi, Pramodsingh Hirasingh Thakur, Jeffrey E. Stahmann, Keith R. Maile, Qi An, Brendan Early Koop, Yinghong Yu, Viktoria A. Averina, Michael J. Kane, Krzysztof Z. Siejko
  • Patent number: 10517498
    Abstract: A cardiac rhythm management system includes a first implantable device such as a defibrillator and a second implantable device such as a leadless cardiac pacemaker. A programmer is configured to receive and display heart data emanating from the implantable defibrillator and from the leadless cardiac pacemaker. The heart data emanating from the leadless cardiac pacemaker is displayed in temporal alignment with the heart data emanating from the implantable defibrillator.
    Type: Grant
    Filed: May 9, 2017
    Date of Patent: December 31, 2019
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Jeffrey E. Stahmann, Michael J. Kane, Paul Huelskamp, Keith R. Maile
  • Publication number: 20190388628
    Abstract: A system for performing an endoscopic surgical procedure in a surgical cavity of a patient that includes a gas delivery device configured to deliver a flow of pressurized gas to a gas delivery lumen extending therefrom, a gaseous sealing module communicating with a distal end of the gas delivery lumen and configured to generate a gaseous seal within a gas sealed lumen extending therefrom, and an access port communicating with a distal end of the gas sealed lumen so as to provide sealed instrument access to the surgical cavity and maintain a stable pressure within the surgical cavity.
    Type: Application
    Filed: June 22, 2018
    Publication date: December 26, 2019
    Inventors: Michael J. Augelli, Mikiya Silver, Michael J. Kane
  • Publication number: 20190388631
    Abstract: A filter cartridge for surgical gas delivery systems includes a filter housing configured to be seated in a filter cartridge interface of a surgical gas delivery system, with a plurality of flow paths defined through the filter housing including at least one evacuation/return flow path and at least one insufflation/sensing flow path. A humidity filter element is included in the evacuation/return flow path for removing humidity from an evacuation/return lumen of a tube set. The humidity filter element can include a sintered polymer material configured to provide tortuous flow paths therethrough to condense humidity out of a flow through the humidity filter element.
    Type: Application
    Filed: June 25, 2018
    Publication date: December 26, 2019
    Inventors: Mikiya Silver, Michael J. Kane
  • Publication number: 20190388630
    Abstract: A system for performing an endoscopic surgical procedure in a surgical cavity of a patient that includes a gas delivery device configured to deliver a flow of pressurized gas to a gas delivery lumen extending therefrom, a gaseous sealing module communicating with a distal end of the gas delivery lumen and configured to generate a gaseous seal within a gas sealed lumen extending therefrom, and an access port communicating with a distal end of the gas sealed lumen so as to provide sealed instrument access to the surgical cavity and maintain a stable pressure within the surgical cavity.
    Type: Application
    Filed: June 22, 2018
    Publication date: December 26, 2019
    Inventors: Mikiya Silver, Michael J. Augelli, Ralph Stearns, Michael J. Kane
  • Publication number: 20190374250
    Abstract: An access device for surgical procedures includes an end cap having a rigid body with a flexible support sealingly mounted to the rigid body with at least one separate access port for accommodating introduction of individual surgical instruments into a body of a patient. The at least one access port is sealingly attached to the flexible support and extend in a proximal direction therefrom. The flexible support is of a material more flexible than those of the rigid body and the at least one access port to provide for relative angular movement of the at least one access port to provide flexibility for positioning surgical instruments introduced through the at least one access port.
    Type: Application
    Filed: August 20, 2019
    Publication date: December 12, 2019
    Inventors: Gennady Kleyman, Michael J. Augelli, Michael J. Kane
  • Patent number: 10478124
    Abstract: This document discusses, among other things, using a pressure sensor to detect body sound information of a patient, such as cardiac murmurs, respiratory sounds, etc.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: November 19, 2019
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Qi An, Yinghong Yu, Jeffrey E. Stahmann, Pramodsingh Hirasingh Thakur, Michael J. Kane
  • Patent number: 10478629
    Abstract: A leadless cardiac pacemaker (LCP) configured to sense cardiac activity and to pace a patient's heart. The LCP may include a housing, a first electrode secured relative to the housing, a second electrode secured relative to the housing, and a pressure sensor secured relative to the housing and coupled to the environment outside of the housing. The LCP may further include circuitry in the housing in communication with the first electrode, the second electrode, and the pressure sensor. The circuitry may be configured to determine and store a plurality of impedance-pressure data pairs, from which a representation of a pressure-volume loop may be determined.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: November 19, 2019
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Qi An, Pramodsingh Hirasingh Thakur, Yinghong Yu, Jeffrey E. Stahmann, Michael J. Kane
  • Patent number: 10463396
    Abstract: An access device for surgical procedures includes a multiport end cap having a rigid body with a flexible support sealingly mounted to the rigid body with a plurality of separate access ports for accommodating introduction of individual surgical instruments into a body of a patient. At least one of the access ports is sealingly attached to the flexible support and extends in a proximal direction therefrom. The flexible support is of a material more flexible than those of the rigid body and access ports to provide for relative angular movement of at least one of the access ports to provide flexibility for positioning surgical instruments introduced through the access ports. The flexible support can include at least one flexible bellow.
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: November 5, 2019
    Assignee: Conmed Corporation
    Inventors: Gennady Kleyman, Michael J. Augelli, Michael J. Kane, Mikiya Silver
  • Patent number: 10463866
    Abstract: Systems and methods for treating cardiac arrhythmias. One example medical device system for delivering electrical stimulation therapy to a heart of a patient may comprise a leadless cardiac pacemaker (LCP) implanted within a heart of a patient and configured to determine occurrences of cardiac arrhythmias, a medical device configured to determine occurrences of cardiac arrhythmias and to deliver defibrillation shock therapy to the patient, wherein the LCP and the medical device are spaced from one another and communicatively coupled, and wherein after the LCP determines an occurrence of a cardiac arrhythmia, the LCP is configured to modify the defibrillation shock therapy of the medical device.
    Type: Grant
    Filed: July 7, 2015
    Date of Patent: November 5, 2019
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Jeffrey E. Stahmann, Michael J. Kane, William J. Linder, Howard D. Simms, Jr., Keith R. Maile
  • Publication number: 20190329002
    Abstract: A system for delivering an implantable medical device includes a handle housing. An outer sheath is coupler secured to a proximal end of an outer sheath that is configured to cover at least a portion of the implantable medical device. An outer sheath drive assembly is operably coupled to the outer sheath coupler and is configured to translate the outer sheath relative to the handle housing. An actuation shaft coupler is secured to a proximal end of an activation shaft. An actuation shaft drive assembly is operably coupled to the actuation shaft coupler and is configured to cause the actuation shaft to translate relative to the handle housing and shift the implantable medical device from a first position and a second position in which the implantable medical device is radially expanded relative to the first position.
    Type: Application
    Filed: April 26, 2019
    Publication date: October 31, 2019
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Kevin Robert Poppe, Daniel J. Foster, Christopher Jay Scheff, Bradley S. Swehla, Peter James Keogh, Stephen J. Burke, Michael J. Kane
  • Patent number: 10449361
    Abstract: Systems and methods for coordinating treatment of abnormal heart activity using multiple implanted devices within a patient. In one example, abnormal heart activity may be sensed by a medical device system. One of the devices of the system may determine to deliver anti-tachycardia pacing therapy to the heart of the patient, and may communicate an instruction to another of the devices of the medical device system to deliver anti-tachycardia pacing (ATP) therapy to the heart. The receiving medical device may then deliver ATP therapy to the heart of the patient.
    Type: Grant
    Filed: January 8, 2015
    Date of Patent: October 22, 2019
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jeffrey E. Stahmann, Howard D. Simms, Jr., Keith R. Maile, Michael J. Kane, William J. Linder
  • Patent number: 10434317
    Abstract: Systems, devices, and methods for pacing a heart of a patient are disclosed. An illustrative method may include determining a motion level of the patient using a motion sensor of an implantable medical device secured relative to a patient's heart, and setting a pacing rate based at least in part on the patient's motion level. The patient's motion level may be determined by, for example, comparing the motion level sensed by the motion sensor during a current heart beat to a motion level associated with one or more previous heart beats. Noise may occur in the motion level measurements during those heart beats that transition between an intrinsically initiated heart beat and pace initiated heart beat. Various techniques may be applied to the motion level measurements to help reduce the effect of such noise.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: October 8, 2019
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Paul Huelskamp, Michael J. Kane, Lance Eric Juffer