Patents by Inventor Michael J. Pikus

Michael J. Pikus has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230389876
    Abstract: Some embodiments of pacing systems employ wireless electrode assemblies to provide pacing therapy. The wireless electrode assemblies may wirelessly receive energy via an inductive coupling so as to provide electrical stimulation to the surrounding heart tissue. In certain embodiments, the wireless electrode assembly may include one or more biased tines that shift from a first position to a second position to secure the wireless electrode assembly into the inner wall of the heart chamber.
    Type: Application
    Filed: August 16, 2023
    Publication date: December 7, 2023
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: WILLIAM J. DRASLER, MICHAEL J. PIKUS, ROGER HASTINGS, SCOTT R. SMITH, DANIEL M. LAFONTAINE, DOUGLAS R. SAHOLT, GRAIG L. KVEEN, MARTIN R. WILLARD
  • Patent number: 11766219
    Abstract: Some embodiments of pacing systems employ wireless electrode assemblies to provide pacing therapy. The wireless electrode assemblies may wirelessly receive energy via an inductive coupling so as to provide electrical stimulation to the surrounding heart tissue. In certain embodiments, the wireless electrode assembly may include one or more biased tines that shift from a first position to a second position to secure the wireless electrode assembly into the inner wall of the heart chamber.
    Type: Grant
    Filed: September 27, 2021
    Date of Patent: September 26, 2023
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: William J. Drasler, Michael J. Pikus, Roger Hastings, Scott R. Smith, Daniel M. Lafontaine, Douglas R. Saholt, Graig L. Kveen, Martin R. Willard
  • Publication number: 20220008010
    Abstract: Some embodiments of pacing systems employ wireless electrode assemblies to provide pacing therapy. The wireless electrode assemblies may wirelessly receive energy via an inductive coupling so as to provide electrical stimulation to the surrounding heart tissue. In certain embodiments, the wireless electrode assembly may include one or more biased tines that shift from a first position to a second position to secure the wireless electrode assembly into the inner wall of the heart chamber.
    Type: Application
    Filed: September 27, 2021
    Publication date: January 13, 2022
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: WILLIAM J. DRASLER, MICHAEL J. PIKUS, ROGER HASTINGS, SCOTT R. SMITH, DANIEL M. LAFONTAINE, DOUGLAS R. SAHOLT, GRAIG L. KVEEN, MARTIN R. WILLARD
  • Patent number: 11154247
    Abstract: Some embodiments of pacing systems employ wireless electrode assemblies to provide pacing therapy. The wireless electrode assemblies may wirelessly receive energy via an inductive coupling so as to provide electrical stimulation to the surrounding heart tissue. In certain embodiments, the wireless electrode assembly may include one or more biased tines that shift from a first position to a second position to secure the wireless electrode assembly into the inner wall of the heart chamber.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: October 26, 2021
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: William J. Drasler, Michael J. Pikus, Roger Hastings, Scott R. Smith, Daniel M. Lafontaine, Douglas R. Saholt, Graig L. Kveen, Martin R. Willard
  • Publication number: 20210052886
    Abstract: Various configurations of systems that employ leadless electrodes to provide pacing therapy are provided. In one example, a system that provides multiple sites for pacing of myocardium of a heart includes wireless pacing electrode assemblies that are implantable at sites proximate the myocardium using a percutaneous, transluminal, catheter delivery system. Also disclosed are various configurations of such systems, wireless electrode assemblies, and delivery catheters for delivering and implanting the electrode assemblies.
    Type: Application
    Filed: October 21, 2020
    Publication date: February 25, 2021
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: ROGER HASTINGS, ANUPAMA SADASIVA, MICHAEL J. PIKUS, GRAIG L. KVEEN
  • Patent number: 10850092
    Abstract: Various configurations of systems that employ leadless electrodes to provide pacing therapy are provided. In one example, a system that provides multiple sites for pacing of myocardium of a heart includes wireless pacing electrode assemblies that are implantable at sites proximate the myocardium using a percutaneous, transluminal, catheter delivery system. Also disclosed are various configurations of such systems, wireless electrode assemblies, and delivery catheters for delivering and implanting the electrode assemblies.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: December 1, 2020
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Roger Hastings, Anupama Sadasiva, Michael J. Pikus, Graig L. Kveen
  • Publication number: 20190255336
    Abstract: A wireless electrostimulation system can comprise a wireless energy transmission source, and an implantable cardiovascular wireless electrostimulation node. A receiver circuit comprising an inductive antenna can be configured to capture magnetic energy to generate a tissue electrostimulation. A tissue electrostimulation circuit, coupled to the receiver circuit, can be configured to deliver energy captured by the receiver circuit as a tissue electrostimulation waveform. Delivery of tissue electrostimulation can be initiated by a therapy control unit.
    Type: Application
    Filed: April 30, 2019
    Publication date: August 22, 2019
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: Roger Hastings, John A. Becker, Michael J. Pikus, Daniel M. Lafontaine, Kevin D. Edmunds
  • Patent number: 10307604
    Abstract: A wireless electrostimulation system can comprise a wireless energy transmission source, and an implantable cardiovascular wireless electrostimulation node. A receiver circuit comprising an inductive antenna can be configured to capture magnetic energy to generate a tissue electrostimulation. A tissue electrostimulation circuit, coupled to the receiver circuit, can be configured to deliver energy captured by the receiver circuit as a tissue electrostimulation waveform. Delivery of tissue electrostimulation can be initiated by a therapy control unit.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: June 4, 2019
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Roger Hastings, John A. Becker, Michael J. Pikus, Daniel M. Lafontaine, Kevin D. Edmunds
  • Publication number: 20180326203
    Abstract: Various configurations of systems that employ leadless electrodes to provide pacing therapy are provided. In one example, a system that provides multiple sites for pacing of myocardium of a heart includes wireless pacing electrode assemblies that are implantable at sites proximate the myocardium using a percutaneous, transluminal, catheter delivery system. Also disclosed are various configurations of such systems, wireless electrode assemblies, and delivery catheters for delivering and implanting the electrode assemblies.
    Type: Application
    Filed: July 20, 2018
    Publication date: November 15, 2018
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: ROGER HASTINGS, ANUPAMA SADASIVA, MICHAEL J. PIKUS, GRAIG L. KVEEN
  • Publication number: 20180289948
    Abstract: Some embodiments of pacing systems employ wireless electrode assemblies to provide pacing therapy. The wireless electrode assemblies may wirelessly receive energy via an inductive coupling so as to provide electrical stimulation to the surrounding heart tissue. In certain embodiments, the wireless electrode assembly may include one or more biased tines that shift from a first position to a second position to secure the wireless electrode assembly into the inner wall of the heart chamber.
    Type: Application
    Filed: June 14, 2018
    Publication date: October 11, 2018
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: WILLIAM J. DRASLER, MICHAEL J. PIKUS, ROGER HASTINGS, SCOTT R. SMITH, DANIEL M. LAFONTAINE, DOUGLAS R. SAHOLT, GRAIG L. KVEEN, MARTIN R. WILLARD
  • Patent number: 10076658
    Abstract: Various configurations of systems that employ leadless electrodes to provide pacing therapy are provided. In one example, a system that provides multiple sites for pacing of myocardium of a heart includes wireless pacing electrode assemblies that are implantable at sites proximate the myocardium using a percutaneous, transluminal, catheter delivery system. Also disclosed are various configurations of such systems, wireless electrode assemblies, and delivery catheters for delivering and implanting the electrode assemblies.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: September 18, 2018
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Roger Hastings, Anupama Sadasiva, Michael J. Pikus, Graig L. Kveen
  • Patent number: 10029092
    Abstract: Various configurations of systems that employ leadless electrodes to provide pacing therapy are provided. In one example, a system that provides multiple sites for pacing of myocardium of a heart includes wireless pacing electrode assemblies that are implantable at sites proximate the myocardium using a percutaneous, transluminal, catheter delivery system. Also disclosed are various configurations of such systems, wireless electrode assemblies, and delivery catheters for delivering and implanting the electrode assemblies.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: July 24, 2018
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Roger N. Hastings, Anupama Sadasiva, Michael J. Pikus, Graig L. Kveen
  • Patent number: 10022538
    Abstract: Some embodiments of pacing systems employ wireless electrode assemblies to provide pacing therapy. The wireless electrode assemblies may wirelessly receive energy via an inductive coupling so as to provide electrical stimulation to the surrounding heart tissue. In certain embodiments, the wireless electrode assembly may include one or more biased tines that shift from a first position to a second position to secure the wireless electrode assembly into the inner wall of the heart chamber.
    Type: Grant
    Filed: October 2, 2013
    Date of Patent: July 17, 2018
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: William J. Drasler, Michael J. Pikus, Roger Hastings, Scott R. Smith, Daniel M. Lafontaine, Douglas R. Saholt, Graig L. Kveen, Martin R. Willard
  • Patent number: 9956401
    Abstract: A seed assembly for delivery to an interior of a heart includes an electrical stimulation circuit for delivering an electrical stimulus to cardiac tissue. A first electrode assembly is mechanically and electrically coupled to the seed assembly via a micro lead, the first electrode assembly configured to deliver the electrical stimulus generated by the electrical stimulation circuit to the cardiac tissue. The seed assembly and the first electrode assembly are sized and shaped to fit entirely within the heart.
    Type: Grant
    Filed: January 23, 2014
    Date of Patent: May 1, 2018
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Roger Hastings, Daniel M. Lafontaine, Michael J. Pikus, Martin R. Willard
  • Patent number: 9795797
    Abstract: A wireless electrostimulation system can comprise a wireless energy transmission source, and an implantable cardiovascular wireless electrostimulation node. A receiver circuit comprising an inductive antenna can be configured to capture magnetic energy to generate a tissue electrostimulation. A tissue electrostimulation circuit, coupled to the receiver circuit, can be configured to deliver energy captured by the receiver circuit as a tissue electrostimulation waveform. Delivery of tissue electrostimulation can be initiated by a therapy control unit.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: October 24, 2017
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Roger Hastings, John A. Becker, Michael J. Pikus, Daniel M. Lafontaine, Kevin D. Edmunds
  • Patent number: 9770606
    Abstract: Systems for nerve and tissue modulation are disclosed. An illustrative system may include an intravascular nerve modulation system including a catheter shaft, a first flexible mount, and a cylindrical ablation transducer. The ablation transducer may be affixed to the catheter shaft through the flexible mount to allow an infusion fluid to pass through a lumen of the transducer. Another illustrative system may include an intravascular nerve modulation system including an expandable basket for centering an ablation tra7nsducer within a lumen.
    Type: Grant
    Filed: October 13, 2014
    Date of Patent: September 26, 2017
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Michael J. Pikus, Kevin D. Edmunds, Mark L. Jenson
  • Publication number: 20170259070
    Abstract: A wireless electrostimulation system can comprise a wireless energy transmission source, and an implantable cardiovascular wireless electrostimulation node. A receiver circuit comprising an inductive antenna can be configured to capture magnetic energy to generate a tissue electrostimulation. A tissue electrostimulation circuit, coupled to the receiver circuit, can be configured to deliver energy captured by the receiver circuit as a tissue electrostimulation waveform. Delivery of tissue electrostimulation can be initiated by a therapy control unit.
    Type: Application
    Filed: May 22, 2017
    Publication date: September 14, 2017
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: Roger Hastings, John A. Becker, Michael J. Pikus, Daniel M. Lafontaine, Kevin D. Edmunds
  • Publication number: 20170136233
    Abstract: Various configurations of systems that employ leadless electrodes to provide pacing therapy are provided. In one example, a system that provides multiple sites for pacing of myocardium of a heart includes wireless pacing electrode assemblies that are implantable at sites proximate the myocardium using a percutaneous, transluminal, catheter delivery system. Also disclosed are various configurations of such systems, wireless electrode assemblies, and delivery catheters for delivering and implanting the electrode assemblies.
    Type: Application
    Filed: December 15, 2016
    Publication date: May 18, 2017
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: ROGER N. HASTINGS, ANUPAMA SADASIVA, MICHAEL J. PIKUS, GRAIG L. KVEEN
  • Patent number: 9545513
    Abstract: Various configurations of systems that employ leadless electrodes to provide pacing therapy are provided. In one example, a system that provides multiple sites for pacing of myocardium of a heart includes wireless pacing electrode assemblies that are implantable at sites proximate the myocardium using a percutaneous, transluminal, catheter delivery system. Also disclosed are various configurations of such systems, wireless electrode assemblies, and delivery catheters for delivering and implanting the electrode assemblies.
    Type: Grant
    Filed: March 24, 2014
    Date of Patent: January 17, 2017
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Roger Hastings, Anupama Sadasiva, Michael J. Pikus, Graig L. Kveen
  • Publication number: 20160310750
    Abstract: A wireless electrostimulation system can comprise a wireless energy transmission source, and an implantable cardiovascular wireless electrostimulation node. A receiver circuit comprising an inductive antenna can be configured to capture magnetic energy to generate a tissue electrostimulation. A tissue electrostimulation circuit, coupled to the receiver circuit, can be configured to deliver energy captured by the receiver circuit as a tissue electrostimulation waveform. Delivery of tissue electrostimulation can be initiated by a therapy control unit.
    Type: Application
    Filed: June 30, 2016
    Publication date: October 27, 2016
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: Roger Hastings, John A. Becker, Michael J. Pikus, Daniel M. Lafontaine, Kevin D. Edmunds