Patents by Inventor Michael J. Pikus

Michael J. Pikus has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9393405
    Abstract: A wireless electrostimulation system can comprise a wireless energy transmission source, and an implantable cardiovascular wireless electrostimulation node. A receiver circuit comprising an inductive antenna can be configured to capture magnetic energy to generate a tissue electrostimulation. A tissue electrostimulation circuit, coupled to the receiver circuit, can be configured to deliver energy captured by the receiver circuit as a tissue electrostimulation waveform. Delivery of tissue electrostimulation can be initiated by a therapy control unit.
    Type: Grant
    Filed: April 29, 2014
    Date of Patent: July 19, 2016
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Roger Hastings, John A. Becker, Michael J. Pikus, Daniel M. Lafontaine, Kevin D. Edmunds
  • Patent number: 9301740
    Abstract: Methods of installing a vascular closure device, the vascular closure device adapted for sealing an opening in biological tissue and comprising an anchor, a compressible plug, a cinch and a suture, the method comprising the steps of providing an insertion sheath, inserting the insertion sheath into the opening in the biological tissue, providing a device sheath having the vascular closure device preloaded therein with a proximal portion of the suture attached to the device sheath, subsequent to the step of inserting the insertion sheath, inserting the device sheath into the insertion sheath, and retracting the insertion sheath and device sheath simultaneously, wherein during the retraction, the insertion sheath and the device sheath are fixed to one another and devices adapted to the methods.
    Type: Grant
    Filed: April 24, 2013
    Date of Patent: April 5, 2016
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Joseph M. Thielen, Jason P. Hill, Mark L. Jenson, Michael J. Pikus, Leonard B. Richardson, Joel Groff
  • Patent number: 9282955
    Abstract: The present disclosure relates generally to methods and devices for closing and/or sealing an opening in a vessel wall and/or an adjacent tissue tract. In one illustrative embodiment, a device is provided for delivering and deploying an anchor, plug, filament, and locking element adjacent to the opening in the vessel wall and/or tissue tract.
    Type: Grant
    Filed: August 11, 2013
    Date of Patent: March 15, 2016
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Mark L. Jenson, Jason P. Hill, Joseph Thielen, Michael J. Pikus, Joel Groff, David Hill
  • Patent number: 9179827
    Abstract: A medical device system includes an elongated body with a distal end that is configured and arranged for insertion into a patient. A housing is disposed in the distal end of the body. A rotatable magnet is disposed in the housing. At least one magnetic field winding is configured and arranged to generate a magnetic field at the location of the magnet. The magnetic field causes rotation of the magnet at a target frequency. An array of magnetic field sensors is disposed external to the patient. The magnetic field sensors are configured and arranged to sense the location and orientation of the magnet in relation to the array of magnetic field sensors.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: November 10, 2015
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Roger N. Hastings, Michael J. Pikus, Kevin D. Edmunds, Leonard B. Richardson, Frank Ingle, Josef Koblish, Tat-Jin Teo
  • Patent number: 9089340
    Abstract: An imaging assembly comprises a catheter having a distal end and a proximal end, an ablation tip at the distal end of the catheter, and an imaging device disposed within the ablation tip. The catheter defines a catheter lumen that extends from the proximal end to the distal end. The catheter is configured and arranged for insertion into a body lumen such as a blood vessel or heart chamber. The ablation tip has a wall that defines a lumen in communication with the lumen of the catheter. The imaging device is disposed within the lumen of the ablation tip, and is configured to transmit pulsed acoustic waves for generating images of body tissue at a target ablation site within the body.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: July 28, 2015
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Roger Hastings, Josef V. Koblish, Michael J. Pikus, Leonard B. Richardson, Kevin Edmunds, Tat-Jin Teo
  • Publication number: 20150105715
    Abstract: Systems for nerve and tissue modulation are disclosed. An illustrative system may include an intravascular nerve modulation system including a catheter shaft, a first flexible mount, and a cylindrical ablation transducer. The ablation transducer may be affixed to the catheter shaft through the flexible mount to allow an infusion fluid to pass through a lumen of the transducer. Another illustrative system may include an intravascular nerve modulation system including an expandable basket for centering an ablation tra7nsducer within a lumen.
    Type: Application
    Filed: October 13, 2014
    Publication date: April 16, 2015
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: MICHAEL J. PIKUS, KEVIN D. EDMUNDS, MARK L. JENSON
  • Publication number: 20140330069
    Abstract: A percutaneous pumping system for providing hemodynamic support to a patient includes a pumping sleeve that defines a lumen extending along the length of the pumping sleeve. The pumping sleeve is configured and arranged for insertion into patient vasculature. At least one rotatable magnet is disposed in the pumping sleeve. The at least one first magnet is configured and arranged to be driven to rotate by a magnetic field generated external to the pumping sleeve. At least one impeller is coupled to the at least one magnet. Rotation of the at least one magnet causes a corresponding rotation of the at least one impeller. An anchoring arrangement is coupled to the pumping sleeve. The anchoring arrangement is configured and arranged to anchor the pumping sleeve at a target pumping location when the pumping sleeve is inserted into patient vasculature.
    Type: Application
    Filed: May 27, 2014
    Publication date: November 6, 2014
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: ROGER N. HASTINGS, MICHAEL J. PIKUS, SCOTT R. SMITH, LEONARD B. RICHARDSON, KEVIN D. EDMUNDS
  • Publication number: 20140276714
    Abstract: Systems for nerve and tissue modulation are disclosed. An example system may include an intravascular nerve modulation system including an elongated shaft having a first tubular member and a second tubular member. Each of the tubular members may have a proximal end a distal end. The distal end of the second tubular member may be extended distally beyond the distal end of the first tubular member. The system may further include at least one transducer affixed to the distal end region of the second tubular member. In addition, the system may include an infusion sheath having a proximal end and a distal end and the proximal end of the infusion sheath may be fixedly secured to the catheter shaft adjacent the distal end of the first tubular member.
    Type: Application
    Filed: February 28, 2014
    Publication date: September 18, 2014
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: KEVIN D. EDMUNDS, MICHAEL J. PIKUS, MARK L. JENSON
  • Publication number: 20140236172
    Abstract: A wireless electrostimulation system can comprise a wireless energy transmission source, and an implantable cardiovascular wireless electrostimulation node. A receiver circuit comprising an inductive antenna can be configured to capture magnetic energy to generate a tissue electrostimulation. A tissue electrostimulation circuit, coupled to the receiver circuit, can be configured to deliver energy captured by the receiver circuit as a tissue electrostimulation waveform. Delivery of tissue electrostimulation can be initiated by a therapy control unit.
    Type: Application
    Filed: April 29, 2014
    Publication date: August 21, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Roger Hastings, John A. Becker, Michael J. Pikus, Daniel M. Lafontaine, Kevin D. Edmunds
  • Publication number: 20140207149
    Abstract: Various configurations of systems that employ leadless electrodes to provide pacing therapy are provided. In one example, a system that provides multiple sites for pacing of myocardium of a heart includes wireless pacing electrode assemblies that are implantable at sites proximate the myocardium using a percutaneous, transluminal, catheter delivery system. Also disclosed are various configurations of such systems, wireless electrode assemblies, and delivery catheters for delivering and implanting the electrode assemblies.
    Type: Application
    Filed: March 24, 2014
    Publication date: July 24, 2014
    Applicant: Boston Scientific Scimed, Inc.
    Inventors: Roger Hastings, Anupama Sadasiva, Michael J. Pikus, Graig L. Kveen
  • Patent number: 8734508
    Abstract: A percutaneous pumping system for providing hemodynamic support to a patient includes a pumping sleeve that defines a lumen extending along the length of the pumping sleeve. The pumping sleeve is configured and arranged for insertion into patient vasculature. At least one rotatable magnet is disposed in the pumping sleeve. The at least one first magnet is configured and arranged to be driven to rotate by a magnetic field generated external to the pumping sleeve. At least one impeller is coupled to the at least one magnet. Rotation of the at least one magnet causes a corresponding rotation of the at least one impeller. An anchoring arrangement is coupled to the pumping sleeve. The anchoring arrangement is configured and arranged to anchor the pumping sleeve at a target pumping location when the pumping sleeve is inserted into patient vasculature.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: May 27, 2014
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Roger N. Hastings, Michael J. Pikus, Scott Raymond Smith, Leonard B. Richardson, Kevin D. Edmunds
  • Patent number: 8738147
    Abstract: A wireless electrostimulation system can comprise a wireless energy transmission source, and an implantable cardiovascular wireless electrostimulation node. A receiver circuit comprising an inductive antenna can be configured to capture magnetic energy to generate a tissue electrostimulation. A tissue electrostimulation circuit, coupled to the receiver circuit, can be configured to deliver energy captured by the receiver circuit as a tissue electrostimulation waveform. Delivery of tissue electrostimulation can be initiated by a therapy control unit.
    Type: Grant
    Filed: January 29, 2009
    Date of Patent: May 27, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Roger Hastings, John A. Becker, Michael J. Pikus, Daniel M. Lafontaine, Kevin D. Edmunds
  • Publication number: 20140135865
    Abstract: A seed assembly for delivery to an interior of a heart includes an electrical stimulation circuit for delivering an electrical stimulus to cardiac tissue. A first electrode assembly is mechanically and electrically coupled to the seed assembly via a micro lead the first electrode assembly configured to deliver the electrical stimulus generated by the electrical stimulation circuit to the cardiac tissue. The seed assembly and the first electrode assembly are sized and shaped to fit entirely within the heart.
    Type: Application
    Filed: January 23, 2014
    Publication date: May 15, 2014
    Applicant: Boston Scientific Scimed, Inc.
    Inventors: Roger Hastings, Daniel M. Lafontaine, Michael J. Pikus, Martin R. Willard
  • Publication number: 20140081244
    Abstract: Medical devices and methods for making and using medical devices are disclosed. An example medical device includes a pressure sensing guidewire. The pressure sensing guidewire may include an elongate shaft including a core wire having a distal portion and a coil disposed over the distal portion. A pressure sensor may be disposed along the distal portion of the core wire and within the coil. One or more leads may be coupled to the pressure sensor. An opening may be formed in the coil that provides access to the pressure sensor.
    Type: Application
    Filed: September 17, 2013
    Publication date: March 20, 2014
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: VIRGIL F. VOELLER, ROGER N. HASTINGS, BRIAN J. HANSON, KEVIN D. EDMUNDS, LEONARD B. RICHARDSON, MICHAEL J. PIKUS
  • Publication number: 20140081301
    Abstract: Systems for nerve and tissue modulation are disclosed. An example system may include a first elongate element having a distal end and a proximal end and having at least one nerve modulation element disposed adjacent the distal end. The nerve modulation element may be positioned or moveable to target a particular tissue region. The nerve modulation element may be an ultrasound transducer.
    Type: Application
    Filed: September 17, 2013
    Publication date: March 20, 2014
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: BINH C. TRAN, ROGER N. HASTINGS, MARK L. JENSON, LEONARD B. RICHARDSON, MICHAEL J. PIKUS
  • Patent number: 8647281
    Abstract: An imaging assembly for an intravascular ultrasound system includes a catheter, an imaging core, and at least one transducer conductor. The imaging core is insertable into the catheter and extendable from a distal end of the catheter. The imaging core includes a rotatable magnet, a tilted reflective surface, and at least one fixed transducer all disposed in a body. The rotatable magnet is configured and arranged to rotate by a magnetic field generated external to the catheter. The tilted reflective surface rotates with the magnet. The at least one transducer is configured and arranged for transforming applied electrical signals to acoustic signals and also for transforming received echo signals to electrical signals. The at least one transducer conductor is electrically coupled to the at least one transducer and is configured and arranged to extend into the catheter when the imaging core is extended from the catheter.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: February 11, 2014
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Roger N. Hastings, Michael J. Pikus, Kevin D. Edmunds, Tat-Jin Teo
  • Publication number: 20140039591
    Abstract: Some embodiments of pacing systems employ wireless electrode assemblies to provide pacing therapy. The wireless electrode assemblies may wirelessly receive energy via an inductive coupling so as to provide electrical stimulation to the surrounding heart tissue. In certain embodiments, the wireless electrode assembly may include one or more biased tines that shift from a first position to a second position to secure the wireless electrode assembly into the inner wall of the heart chamber.
    Type: Application
    Filed: October 2, 2013
    Publication date: February 6, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: William J. Drasler, Michael J. Pikus, Roger Hastings, Scott R. Smith, Daniel M. Lafontaine, Douglas R. Saholt, Graig L. Kveen, Martin R. Willard
  • Patent number: 8644934
    Abstract: An implantable cardiac tissue excitation system includes an implantable pacing controller unit with a pulse generation circuit. The system also includes a lead with a lead body extending between a proximal lead end attachable to the pacing controller unit and a distal lead end configured to be implanted within a heart. A lead conductor extends within the lead body. The system also includes a transmitter assembly located near the distal lead end that is electrically connected to the pulse generation circuit through the lead conductor to wirelessly transmit pacing control information and pacing energy. The system also includes a leadless electrode assembly configured to be implanted within the heart that includes a receiver to receive the wireless transmission, a charge storage unit to store the charge energy, and an electrical stimulation circuit to deliver an electrical stimulus to cardiac tissue using the pacing control information and the charge energy.
    Type: Grant
    Filed: September 13, 2007
    Date of Patent: February 4, 2014
    Assignee: Boston Scientific Scimed Inc.
    Inventors: Roger N. Hastings, Daniel M. Lafontaine, Michael J. Pikus, Martin R. Willard
  • Publication number: 20130325060
    Abstract: The present disclosure relates generally to methods and devices for closing and/or sealing an opening in a vessel wall and/or an adjacent tissue tract. In one illustrative embodiment, a device is provided for delivering and deploying an anchor, plug, filament, and locking element adjacent to the opening in the vessel wall and/or tissue tract.
    Type: Application
    Filed: August 11, 2013
    Publication date: December 5, 2013
    Inventors: Mark L. Jenson, Jason P. Hill, Joseph Thielen, Michael J. Pikus, Joel Groff, David Hill
  • Publication number: 20130268042
    Abstract: Various configurations of systems that employ leadless electrodes to provide pacing therapy are provided. In one example, a system that provides multiple sites for pacing of myocardium of a heart includes wireless pacing electrode assemblies that are implantable at sites proximate the myocardium using a percutaneous, transluminal, catheter delivery system. Also disclosed are various configurations of such systems, wireless electrode assemblies, and delivery catheters for delivering and implanting the electrode assemblies.
    Type: Application
    Filed: December 17, 2012
    Publication date: October 10, 2013
    Inventors: Roger Hastings, Anupama Sadasiva, Michael J. Pikus, Graig L. Kveen