Patents by Inventor Michael Nowak

Michael Nowak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9508439
    Abstract: An apparatus includes a multiple time programmable (MTP) memory device. The MTP memory device includes a metal gate, a substrate material, and an oxide structure between the metal gate and the substrate material. The oxide structure includes a hafnium oxide layer and a silicon dioxide layer. The hafnium oxide layer is in contact with the metal gate and in contact with the silicon dioxide layer. The silicon dioxide layer is in contact with the substrate material. The MTP device includes a transistor, and a non-volatile state of the MTP memory device is based on a threshold voltage of the transistor.
    Type: Grant
    Filed: January 21, 2015
    Date of Patent: November 29, 2016
    Assignee: QUALCOMM Incorporated
    Inventors: Xia Li, Jeffrey Junhao Xu, Xiao Lu, Matthew Michael Nowak, Seung Hyuk Kang, Xiaonan Chen, Zhongze Wang, Yu Lu
  • Patent number: 9478541
    Abstract: A method for half-node scaling a circuit layout in accordance with an aspect of the present disclosure includes vertical devices on a die. The method includes reducing a fin pitch and a gate pitch of the vertical devices on the die. The method also includes scaling a wavelength to define at least one reduced area geometric pattern of the circuit layout.
    Type: Grant
    Filed: September 8, 2014
    Date of Patent: October 25, 2016
    Assignee: QUALCOMM INCORPORATED
    Inventors: Stanley Seungchul Song, Kern Rim, Jeffrey Junhao Xu, Matthew Michael Nowak, Choh Fei Yeap, Roawen Chen
  • Publication number: 20160293477
    Abstract: Silicon-on-insulator (SOI) wafers employing molded substrates to improve insulation and reduce current leakage are provided. In one aspect, a SOI wafer comprises a substrate. An insulating layer (e.g., a buried oxide (BOX) layer) is disposed above the substrate to insulate an active semiconductor layer disposed above the insulating layer, from the substrate. Transistors are formed in the active semiconductor layer. To provide for improved insulation between the active semiconductor layer and the substrate to reduce leakage and improve performance of the active semiconductor layer, the substrate is provided in the form of a molded substrate. A coating layer is also disposed between the molded substrate and the insulating layer of the SOI wafer, in case, for example, the melting temperature of a molding compound used to form the molded substrate is not low enough to prevent contamination of the active semiconductor layer into the insulating layer.
    Type: Application
    Filed: September 16, 2015
    Publication date: October 6, 2016
    Inventors: Daeik Daniel Kim, Changhan Hobie Yun, Je-Hsiung Jeffrey Lan, Mario Francisco Velez, Jonghae Kim, Matthew Michael Nowak
  • Publication number: 20160283485
    Abstract: A social networking system obtains linguistic data from a user's text communications on the social networking system. For example, occurrences of words in various types of communications by the user in the social networking system are determined. The linguistic data and non-linguistic data associated with the user are used in a trained model to predict one or more personality characteristics for the user. The inferred personality characteristics are stored in connection with the user's profile, and may be used for targeting, ranking, selecting versions of products, and various other purposes.
    Type: Application
    Filed: June 3, 2016
    Publication date: September 29, 2016
    Inventors: Michael Nowak, Dean Eckles
  • Publication number: 20160254237
    Abstract: Ground shielding is achieved by a conductor shield having conductive surfaces that immediately surround individual chips within a fan-out wafer level package (FOWLP) module or device. Intra-module shielding between individual chips within the FOWLP module or device is achieved by electromagnetic or radio-signal (RF) isolation provided by the surfaces of the conductor shield immediately surrounding each of the chips. The conductor shield is directly connected to one or more grounded conductor portions of a FOWLP to ensure reliable grounding.
    Type: Application
    Filed: February 27, 2015
    Publication date: September 1, 2016
    Inventors: Daeik Daniel KIM, David Francis BERDY, Mario Francisco VELEZ, Changhan Hobie YUN, Chengjie ZUO, Jonghae KIM, Matthew Michael NOWAK
  • Publication number: 20160254236
    Abstract: Ground shielding is achieved by a conductor shield having conductive surfaces that immediately surround individual chips within a multichip module or device, such as a multichip module or device with flip-chip (FC) bumps. Intra-module shielding between individual chips within the multichip module or device is achieved by electromagnetic or radio-signal (RF) isolation provided by the surfaces of the conductor shield immediately surrounding each of the chips. The conductor shield is directly connected to one or more grounded conductor portions of a substrate or interposer to ensure reliable grounding.
    Type: Application
    Filed: February 27, 2015
    Publication date: September 1, 2016
    Inventors: Daeik Daniel KIM, Changhan Hobie YUN, Mario Francisco VELEZ, David Francis BERDY, Chengjie ZUO, Jonghae KIM, Matthew Michael NOWAK
  • Patent number: 9425761
    Abstract: A filter includes a glass substrate having through substrate vias. The filter also includes capacitors supported by the glass substrate. The capacitors may have a width and/or thickness less than a printing resolution. The filter also includes a 3D inductor within the substrate. The 3D inductor includes a first set of traces on a first surface of the glass substrate coupled to the through substrate vias. The 3D inductor also includes a second set of traces on a second surface of the glass substrate coupled to opposite ends of the through substrate vias. The second surface of the glass substrate is opposite the first surface of the glass substrate. The through substrate vias and traces operate as the 3D inductor. The first set of traces and the second set of traces may also have a width and/or thickness less than the printing resolution.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: August 23, 2016
    Assignee: QUALCOMM INCORPORATED
    Inventors: Chengjie Zuo, Jonghae Kim, Changhan Hobie Yun, Daeik Daniel Kim, Mario Francisco Velez, Je-Hsiung Lan, Robert Paul Mikulka, Matthew Michael Nowak
  • Patent number: 9425096
    Abstract: Systems and methods are directed to a semiconductor device, which includes an integrated circuit, wherein the integrated circuit includes at least a first layer comprising two or more Tungsten lines and at least one air gap between at least two Tungsten lines, the air gaps to reduce capacitance. An interposer is coupled to the integrated circuit, to reduce stress on the two or more Tungsten lines and the at least one air gap. A laminated package substrate may be attached to the interposer such that the interposer is configured to absorb mechanical stress induced by mismatch in coefficient of thermal expansion (CTE) between the laminated package substrate and the interposer and protect the air gap from the mechanical stress.
    Type: Grant
    Filed: July 14, 2014
    Date of Patent: August 23, 2016
    Assignee: QUALCOMM INCORPORATED
    Inventors: Shiqun Gu, Matthew Michael Nowak, Jeffrey Junhao Xu
  • Patent number: 9386080
    Abstract: A social networking system obtains linguistic data from a user's text communications on the social networking system. For example, occurrences of words in various types of communications by the user in the social networking system are determined. The linguistic data and non-linguistic data associated with the user are used in a trained model to predict one or more personality characteristics for the user. The inferred personality characteristics are stored in connection with the user's profile, and may be used for targeting, ranking, selecting versions of products, and various other purposes.
    Type: Grant
    Filed: August 21, 2014
    Date of Patent: July 5, 2016
    Assignee: Facebook, Inc.
    Inventors: Michael Nowak, Dean Eckles
  • Patent number: 9373782
    Abstract: A memory device may comprise a magnetic tunnel junction (MTJ) stack, a bottom electrode (BE) layer, and a contact layer. The MTJ stack may include a free layer, a barrier, and a pinned layer. The BE layer may be coupled to the MTJ stack, and encapsulated in a planarized layer. The BE layer may also have a substantial common axis with the MTJ stack. The contact layer may be embedded in the BE layer, and form an interface between the BE layer and the MTJ stack.
    Type: Grant
    Filed: October 20, 2014
    Date of Patent: June 21, 2016
    Assignee: QUALCOMM Incorporated
    Inventors: Xia Li, Seung Hyuk Kang, Matthew Michael Nowak
  • Patent number: 9343135
    Abstract: One feature pertains to a method of implementing a physically unclonable function. The method includes initializing an array of magnetoresistive random-access memory (MRAM) cells to a first logical state, where each of the MRAM cells have a random transition voltage that is greater than a first voltage and less than a second voltage. The transition voltage represents a voltage level that causes the MRAM cells to transition from the first logical state to a second logical state. The method further includes applying a programming signal voltage to each of the MRAM cells of the array to cause at least a portion of the MRAM cells of the array to randomly change state from the first logical state to the second logical state, where the programming signal voltage is greater than the first voltage and less than the second voltage.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: May 17, 2016
    Assignee: QUALCOMM Incorporated
    Inventors: Xiaochun Zhu, Steven M. Millendorf, Xu Guo, David M. Jacobson, Kangho Lee, Seung H. Kang, Matthew Michael Nowak
  • Patent number: 9331666
    Abstract: This disclosure provides systems, methods and apparatus related to acoustic resonators that include composite transduction layers for enabling selective tuning of one or more acoustic or electromechanical properties. In one aspect, a resonator structure includes one or more first electrodes, one or more second electrodes, and a transduction layer arranged between the first and second electrodes. The transduction layer includes a plurality of constituent layers. In some implementations, the constituent layers include one or more first piezoelectric layers and one or more second piezoelectric layers. The transduction layer is configured to, responsive to signals provided to the first and second electrodes, provide at least a first mode of vibration of the transduction layer with a displacement component along the z axis and at least a second mode of vibration of the transduction layer with a displacement component along the plane of the x axis and they axis.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: May 3, 2016
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Chengjie Zuo, Jonghae Kim, Changhan Hobie Yun, Sang-June Park, Philip Jason Stephanou, Chi Shun Lo, Robert Paul Mikulka, Mario Francisco Velez, Ravindra V. Shenoy, Matthew Michael Nowak
  • Publication number: 20160093750
    Abstract: An apparatus includes a varactor having a first contact that is located on a first side of a substrate. The varactor includes a second contact that is located on a second side of the substrate, and the second side is opposite the first side. The apparatus further includes a signal path between the first contact and the second contact.
    Type: Application
    Filed: September 26, 2014
    Publication date: March 31, 2016
    Inventors: Daeik Daniel Kim, Jonghae Kim, Chengjie Zuo, Sang-June Park, Changhan Hobie Yun, Mario Francisco Velez, David Francis Berdy, Matthew Michael Nowak, Robert Paul Mikulka
  • Patent number: 9298946
    Abstract: One feature pertains to a method of implementing a physically unclonable function that includes providing an array of metal-insulator-metal (MIM) devices, where the MIM devices are configured to represent a first resistance state or a second resistance state and a plurality of the MIM devices are initially at the first resistance state. The MIM devices have a random breakdown voltage that is greater than a first voltage and less than a second voltage, where the breakdown voltage represents a voltage that causes the MIM devices to transition from the first resistance state to the second resistance state. The method further includes applying a signal line voltage to the MIM devices to cause a portion of the MIM devices to randomly breakdown and transition from the first resistance state to the second resistance state, the signal line voltage greater than the first voltage and less than the second voltage.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: March 29, 2016
    Assignee: QUALCOMM Incorporated
    Inventors: Xiaochun Zhu, Steven M. Millendorf, Xu Guo, David M. Jacobson, Kangho Lee, Seung H. Kang, Matthew Michael Nowak
  • Publication number: 20160071847
    Abstract: A method for half-node scaling a circuit layout in accordance with an aspect of the present disclosure includes vertical devices on a die. The method includes reducing a fin pitch and a gate pitch of the vertical devices on the die. The method also includes scaling a wavelength to define at least one reduced area geometric pattern of the circuit layout.
    Type: Application
    Filed: September 8, 2014
    Publication date: March 10, 2016
    Inventors: Stanley Seungchul SONG, Kern RIM, Jeffrey Junhao XU, Matthew Michael NOWAK, Choh Fei YEAP, Roawen CHEN
  • Patent number: 9268720
    Abstract: A load balancing in a multiple DRAM system comprises interleaving memory data across two or more memory channels. Access to the memory channels is controlled by memory controllers. Bus masters are coupled to the memory controllers via an interconnect system and memory requests are transmitted from the bus masters to the memory controller. If congestion is detected in a memory channel, congestion signals are generated and transmitted to the bus masters. Memory requests are accordingly withdrawn or rerouted to less congested memory channels based on the congestion signals.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: February 23, 2016
    Assignee: QUALCOMM Incorporated
    Inventors: Feng Wang, Shiqun Gu, Jonghae Kim, Matthew Michael Nowak
  • Patent number: 9264013
    Abstract: Systems for reducing magnetic coupling in integrated circuits (ICs) are disclosed. Related components and methods are also disclosed. The ICs have a plurality of inductors. Each inductor generates a magnetic flux that has a discernible axis. To reduce magnetic coupling between the inductors, the flux axes are designed so as to be non-parallel. In particular, by making the flux axes of the inductors non-parallel to one another, magnetic coupling between the inductors is reduced relative to the situation where the flux axes are parallel. This arrangement may be particularly well suited for use in diplexers having a low pass and a high pass filter.
    Type: Grant
    Filed: September 6, 2013
    Date of Patent: February 16, 2016
    Assignee: QUALCOMM Incorporated
    Inventors: Chengjie Zuo, Jonghae Kim, Daeik Daniel Kim, Mario Francisco Velez, Changhan Hobie Yun, Je-Hsiung Jeffrey Lan, Robert Paul Mikulka, Matthew Michael Nowak
  • Publication number: 20160013133
    Abstract: Systems and methods are directed to a semiconductor device, which includes an integrated circuit, wherein the integrated circuit includes at least a first layer comprising two or more Tungsten lines and at least one air gap between at least two Tungsten lines, the air gaps to reduce capacitance. An interposer is coupled to the integrated circuit, to reduce stress on the two or more Tungsten lines and the at least one air gap. A laminated package substrate may be attached to the interposer such that the interposer is configured to absorb mechanical stress induced by mismatch in coefficient of thermal expansion (CTE) between the laminated package substrate and the interposer and protect the air gap from the mechanical stress.
    Type: Application
    Filed: July 14, 2014
    Publication date: January 14, 2016
    Inventors: Shiqun GU, Matthew Michael NOWAK, Jeffrey Junhao XU
  • Publication number: 20160012896
    Abstract: An apparatus includes a multiple time programmable (MTP) memory device. The MTP memory device includes a metal gate, a substrate material, and an oxide structure between the metal gate and the substrate material. The oxide structure includes a hafnium oxide layer and a silicon dioxide layer. The hafnium oxide layer is in contact with the metal gate and in contact with the silicon dioxide layer. The silicon dioxide layer is in contact with the substrate material. The MTP device includes a transistor, and a non-volatile state of the MTP memory device is based on a threshold voltage of the transistor.
    Type: Application
    Filed: January 21, 2015
    Publication date: January 14, 2016
    Inventors: Xia Li, Jeffrey Junhao Xu, Xiao Lu, Matthew Michael Nowak, Seung Hyuk Kang, Xiaonan Chen, Zhongze Wang, Yu Lu
  • Patent number: 9230630
    Abstract: One feature pertains to a method for implementing a physically unclonable function (PUF). The method includes providing an array of magnetoresistive random access memory (MRAM) cells, where the MRAM cells are each configured to represent one of a first logical state and a second logical state. The array of MRAM cells are un-annealed and free from exposure to an external magnetic field oriented in a direction configured to initialize the MRAM cells to a single logical state of the first and second logical states. Consequently, each MRAM cell has a random initial logical state of the first and second logical states. The method further includes sending a challenge to the MRAM cell array that reads logical states of select MRAM cells of the array, and obtaining a response to the challenge from the MRAM cell array that includes the logical states of the selected MRAM cells of the array.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: January 5, 2016
    Assignee: QUALCOMM Incorporated
    Inventors: Xiaochun Zhu, Steven M. Millendorf, Xu Guo, David M. Jacobson, Kangho Lee, Seung H. Kang, Matthew Michael Nowak