Patents by Inventor Michael Previte

Michael Previte has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220136047
    Abstract: Fluorescence imaging system designs are described that provide larger fields-of-view, increased spatial resolution, improved modulation transfer and image quality, higher spatial sampling frequency, faster transitions between image capture when repositioning the sample plane to capture a series of images (e.g., of different fields-of-view), and improved imaging system duty cycle, and thus enable higher throughput image acquisition and analysis for genomics and other imaging applications.
    Type: Application
    Filed: January 12, 2022
    Publication date: May 5, 2022
    Inventors: Steve Xiangling CHEN, Minghao GUO, Michael PREVITE, Chunhong ZHOU, Derek FULLER
  • Patent number: 11287422
    Abstract: Multivalent binding compositions including a particle-nucleotide conjugate having a plurality of copies of a nucleotide attached to the particle are described. The multivalent binding compositions allow one to localize detectable signals to active regions of biochemical interaction, e.g., sites of protein-protein interaction, protein-nucleic acid interaction, nucleic acid hybridization, or enzymatic reaction, and can be used to identify sites of base incorporation in elongating nucleic acid chains during polymerase reactions and to provide improved base discrimination for sequencing and array based applications.
    Type: Grant
    Filed: June 24, 2021
    Date of Patent: March 29, 2022
    Assignee: ELEMENT BIOSCIENCES, INC.
    Inventors: Michael Previte, Molly Min He, Junhua Zhao, Hui Zhen Mah, Chunhong Zhou, Sinan Arslan, Matthew Kellinger, Lorenzo Berti, Steve Xiangling Chen
  • Patent number: 11261489
    Abstract: Fluorescence imaging system designs are described that provide larger fields-of-view, increased spatial resolution, improved modulation transfer and image quality, higher spatial sampling frequency, faster transitions between image capture when repositioning the sample plane to capture a series of images (e.g., of different fields-of-view), and improved imaging system duty cycle, and thus enable higher throughput image acquisition and analysis for genomics and other imaging applications.
    Type: Grant
    Filed: July 9, 2021
    Date of Patent: March 1, 2022
    Assignee: ELEMENT BIOSCIENCES, INC.
    Inventors: Steve Xiangling Chen, Minghao Guo, Michael Previte, Chunhong Zhou, Derek Fuller
  • Publication number: 20220056424
    Abstract: Presented herein are altered polymerase enzymes for improved incorporation of nucleotides and nucleotide analogues, in particular altered polymerases that maintain high fidelity under reduced incorporation times, as well as methods and kits using the same.
    Type: Application
    Filed: August 9, 2021
    Publication date: February 24, 2022
    Applicants: Illumina, Inc., Illumina Singapore Pte. Ltd.
    Inventors: Misha Golynskiy, Seth McDonald, Saurabh Nirantar, Matthew Kellinger, Michael Previte, Sergio Peisajovich, Molly He
  • Patent number: 11242560
    Abstract: A method of distinguishing nucleotide sequences for different nucleic acid molecules including the steps of (a) mixing a plurality of different nucleic acid molecules with polymerase molecules and nucleotide molecules, wherein the different nucleic acid molecules are attached to a surface in the form of an array of nucleic acid features; (b) determining a transient state of the polymerase molecules at the nucleic acid features; and (c) identifying a subset of nucleic acid features that correctly incorporate the nucleotide molecules based on the transient state of the polymerase molecules at the nucleic acid features, thereby distinguishing the nucleotide sequences for the different nucleic acid molecules.
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: February 8, 2022
    Assignee: Illumina, Inc.
    Inventors: Michael Previte, Molly He, Rigo Pantoja, Cheng-Yao Chen, Chunhong Zhou
  • Patent number: 11236388
    Abstract: The present disclosure provides compositions and methods that employ the compositions for conducting pairwise sequencing and for generating concatemer template molecules for pairwise sequencing. The concatemers can be generated using a rolling circle amplification reaction which is conducted either on-support, or conducted in-solution and then distributed onto a support. The rolling circle amplification reaction generates concatemers containing tandem copies of a sequence of interest and at least one universal adaptor sequence. An increase in the number of tandem copies in a given concatemer increases the number of sites along the concatemer for hybridizing to multiple sequencing primers which serve as multiple initiation sites for polymerase-catalyzed sequencing reactions. When the sequencing reaction employs detectably labeled nucleotides and/or detectably labeled multivalent molecules (e.g.
    Type: Grant
    Filed: July 15, 2021
    Date of Patent: February 1, 2022
    Assignee: Element Biosciences, Inc.
    Inventors: Sinan Arslan, Junhua Zhao, Molly He, Samantha Snow, William Light, Matthew Kellinger, Michael Previte
  • Publication number: 20220025457
    Abstract: Methods and systems for sequencing a nucleic acid molecule are described that comprise imaging a first surface and an axially-displaced second surface using a compensation-free optical system, the system comprising an objective lens and at least one image sensor, wherein said optical system has a numerical aperture (NA) of less than 0.6 and a field-of-view (FOV) of greater than 1.0 mm2; and) processing the images of the first surface and the axially-displaced second surface to correct for optical aberration such that the images of the first surface and the axially-displaced second surface have substantially the same optical resolution.
    Type: Application
    Filed: October 7, 2021
    Publication date: January 27, 2022
    Inventors: Steve Xiangling CHEN, Minghao GUO, Michael PREVITE, Chunhong ZHOU, Derek FULLER
  • Patent number: 11220707
    Abstract: The present disclosure provides compositions and methods that employ the compositions for conducting pairwise sequencing and for generating concatemer template molecules for pairwise sequencing. The concatemers can be generated using a rolling circle amplification reaction which is conducted either on-support, or conducted in-solution and then distributed onto a support. The rolling circle amplification reaction generates concatemers containing tandem copies of a sequence of interest and at least one universal adaptor sequence. An increase in the number of tandem copies in a given concatemer increases the number of sites along the concatemer for hybridizing to multiple sequencing primers which serve as multiple initiation sites for polymerase-catalyzed sequencing reactions. When the sequencing reaction employs detectably labeled nucleotides and/or detectably labeled multivalent molecules (e.g.
    Type: Grant
    Filed: July 15, 2021
    Date of Patent: January 11, 2022
    Assignee: Element Biosciences, Inc.
    Inventors: Sinan Arslan, Junhua Zhao, Molly He, Samantha Snow, William Light, Matthew Kellinger, Michael Previte
  • Publication number: 20210387184
    Abstract: Flow cell devices, cartridges, and systems are described that provide reduced manufacturing complexity, lowered consumable costs, and flexible system throughput for nucleic acid sequencing and other chemical or biological analysis applications. The flow cell device can include a capillary flow cell device or a microfluidic flow cell device.
    Type: Application
    Filed: March 30, 2021
    Publication date: December 16, 2021
    Inventors: Minghao GUO, Leon Zilun ZHANG, Chunhong ZHOU, Matthew KELLINGER, Michael PREVITE, Sinan ARSLAN, Molly HE, Huizhen MAH, Lei SUN
  • Patent number: 11198854
    Abstract: Presented herein are polymerase enzymes for improved incorporation of nucleotide analogues, in particular nucleotides which are modified at the 3? sugar hydroxyl, as well as methods and kits using the same.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: December 14, 2021
    Assignee: Illumina, Inc.
    Inventors: Erin Bomati, Michael Previte, Matthew William Kellinger, Cheng-Yao Chen, Molly He
  • Patent number: 11198121
    Abstract: Flow cell devices, cartridges, and systems are described that provide reduced manufacturing complexity, lowered consumable costs, and flexible system throughput for nucleic acid sequencing and other chemical or biological analysis applications. The flow cell device can include a capillary flow cell device or a microfluidic flow cell device.
    Type: Grant
    Filed: March 30, 2021
    Date of Patent: December 14, 2021
    Assignee: ELEMENT BIOSCIENCES, INC.
    Inventors: Minghao Guo, Leon Zilun Zhang, Chunhong Zhou, Matthew Kellinger, Michael Previte, Sinan Arslan, Molly He, Hui Zhen Mah, Lei Sun
  • Publication number: 20210373000
    Abstract: Multivalent binding compositions including a particle-nucleotide conjugate having a plurality of copies of a nucleotide attached to the particle are described. The multivalent binding compositions allow one to localize detectable signals to active regions of biochemical interaction, e.g., sites of protein-protein interaction, protein-nucleic acid interaction, nucleic acid hybridization, or enzymatic reaction, and can be used to identify sites of base incorporation in elongating nucleic acid chains during polymerase reactions and to provide improved base discrimination for sequencing and array based applications.
    Type: Application
    Filed: August 10, 2021
    Publication date: December 2, 2021
    Inventors: Sinan ARSLAN, Molly HE, Matthew KELLINGER, Jake LEVIEUX, Michael PREVITE, Junhua ZHAO, Su ZHANG, Tyler LOPEZ
  • Publication number: 20210371833
    Abstract: Presented herein are methods and compositions for thermostable DNA polymerases that may be used to improve the PCR process and to improve the results obtained when using a thermostable DNA polymerase in other recombinant techniques such as DNA sequencing, nick-translation, and reverse transcription.
    Type: Application
    Filed: April 2, 2021
    Publication date: December 2, 2021
    Applicant: ILLUMINA, INC.
    Inventors: Misha Golynskiy, Molly He, Michael Previte, BeiBei Wang, Sergio Peisajovich
  • Publication number: 20210332416
    Abstract: Fluorescence imaging system designs are described that provide larger fields-of-view, increased spatial resolution, improved modulation transfer and image quality, higher spatial sampling frequency, faster transitions between image capture when repositioning the sample plane to capture a series of images (e.g., of different fields-of-view), and improved imaging system duty cycle, and thus enable higher throughput image acquisition and analysis for genomics and other imaging applications.
    Type: Application
    Filed: July 9, 2021
    Publication date: October 28, 2021
    Inventors: Steve Xiangling CHEN, Minghao GUO, Michael PREVITE, Chunhong ZHOU, Derek FULLER
  • Publication number: 20210333211
    Abstract: Fluorescence imaging system designs are described that provide larger fields-of-view, increased spatial resolution, improved modulation transfer and image quality, higher spatial sampling frequency, faster transitions between image capture when repositioning the sample plane to capture a series of images (e.g., of different fields-of-view), and improved imaging system duty cycle, and thus enable higher throughput image acquisition and analysis for genomics and other imaging applications.
    Type: Application
    Filed: July 9, 2021
    Publication date: October 28, 2021
    Inventors: Steve Xiangling CHEN, Minghao GUO, Michael PREVITE, Chunhong ZHOU, Derek FULLER
  • Publication number: 20210332430
    Abstract: Fluorescence imaging system designs are described that provide larger fields-of-view, increased spatial resolution, improved modulation transfer and image quality, higher spatial sampling frequency, faster transitions between image capture when repositioning the sample plane to capture a series of images (e.g., of different fields-of-view), and improved imaging system duty cycle, and thus enable higher throughput image acquisition and analysis for genomics and other imaging applications.
    Type: Application
    Filed: July 12, 2021
    Publication date: October 28, 2021
    Inventors: Sinan ARSLAN, Molly HE, Michael PREVITE, Steve Xiangling CHEN, Minghao GUO, Chunhong ZHOU, Derek FULLER
  • Publication number: 20210333210
    Abstract: Fluorescence imaging system designs are described that provide larger fields-of-view, increased spatial resolution, improved modulation transfer and image quality, higher spatial sampling frequency, faster transitions between image capture when repositioning the sample plane to capture a series of images (e.g., of different fields-of-view), and improved imaging system duty cycle, and thus enable higher throughput image acquisition and analysis for genomics and other imaging applications.
    Type: Application
    Filed: July 9, 2021
    Publication date: October 28, 2021
    Inventors: Steve Xiangling CHEN, Minghao GUO, Michael PREVITE, Chunhong ZHOU, Derek FULLER
  • Publication number: 20210318294
    Abstract: Multivalent binding compositions including a particle-nucleotide conjugate having a plurality of copies of a nucleotide attached to the particle are described. The multivalent binding compositions allow one to localize detectable signals to active regions of biochemical interaction, e.g., sites of protein-protein interaction, protein-nucleic acid interaction, nucleic acid hybridization, or enzymatic reaction, and can be used to identify sites of base incorporation in elongating nucleic acid chains during polymerase reactions and to provide improved base discrimination for sequencing and array based applications.
    Type: Application
    Filed: June 24, 2021
    Publication date: October 14, 2021
    Inventors: Michael PREVITE, Molly Min HE, Junhua ZHAO, Hui Zhen MAH, Chunhong ZHOU, Sinan ARSLAN, Matthew KELLINGER, Lorenzo BERTI, Steve Xiangling CHEN
  • Publication number: 20210318295
    Abstract: Multivalent binding compositions including a particle-nucleotide conjugate having a plurality of copies of a nucleotide attached to the particle are described. The multivalent binding compositions allow one to localize detectable signals to active regions of biochemical interaction, e.g., sites of protein-protein interaction, protein-nucleic acid interaction, nucleic acid hybridization, or enzymatic reaction, and can be used to identify sites of base incorporation in elongating nucleic acid chains during polymerase reactions and to provide improved base discrimination for sequencing and array based applications.
    Type: Application
    Filed: June 25, 2021
    Publication date: October 14, 2021
    Inventors: Sinan Arslan, Molly Min HE, Matthew KELLINGER, Jake LEVIEUX, Michael PREVITE, Junhua ZHAO, Su ZHANG
  • Publication number: 20210269793
    Abstract: Provided herein are methods for generating circular nucleic acid molecules and circular nucleic acid libraries. The methods can be used to generate clonal populations of target nucleic acid molecules for downstream applications such as sequencing.
    Type: Application
    Filed: May 13, 2021
    Publication date: September 2, 2021
    Inventors: Matthew Kellinger, Sinan ARSLAN, Michael PREVITE, Junhua Zhao