Patents by Inventor Michael Previte

Michael Previte has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11104888
    Abstract: Presented herein are altered polymerase enzymes for improved incorporation of nucleotides and nucleotide analogues, in particular altered polymerases that maintain high fidelity under reduced incorporation times, as well as methods and kits using the same.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: August 31, 2021
    Assignees: Illumina, Inc., Illumina Singapore Pte. Ltd.
    Inventors: Misha Golynskiy, Seth McDonald, Saurabh Nirantar, Matthew Kellinger, Michael Previte, Sergio Peisajovich, Molly He
  • Publication number: 20210247389
    Abstract: Multivalent binding compositions including a particle-nucleotide conjugate having a plurality of copies of a nucleotide attached to the particle are described. The multivalent binding compositions allow one to localize detectable signals to active regions of biochemical interaction, e.g., sites of protein-protein interaction, protein-nucleic acid interaction, nucleic acid hybridization, or enzymatic reaction, and can be used to identify sites of base incorporation in elongating nucleic acid chains during polymerase reactions and to provide improved base discrimination for sequencing and array based applications.
    Type: Application
    Filed: April 30, 2021
    Publication date: August 12, 2021
    Inventors: Sinan Arslan, Molly HE, Matthew KELLINGER, Jake LEVIEUX, Michael PREVITE, Junhua ZHAO, Su ZHANG
  • Publication number: 20210223531
    Abstract: Optical systems for DNA sequencing and other assays are described. Microscope designs may include a light source configured to emit an excitation beam and an objective lens disposed to receive the excitation beam, direct the excitation beam to a specimen, and receive emission light emitted by the specimen in response to the excitation beam. A plurality of detection channels includes optics configured to receive at least a portion of the emission light. A first dichroic filter can be disposed to reflect the excitation beam into the objective lens and to transmit the emission light, and a second dichroic filter can be disposed to receive the transmitted emission light, transmit a first portion of the transmitted emission light to a first channel of the plurality of channels, and reflect a second portion of the transmitted emission light to a second channel of the plurality of channels.
    Type: Application
    Filed: January 15, 2021
    Publication date: July 22, 2021
    Inventors: Minghao Guo, Michael Previte, Steven Xiangling Chen, Chunhong Zhou
  • Publication number: 20210223178
    Abstract: Optical systems for DNA sequencing and other assays are described. Microscope designs may include a light source configured to emit an excitation beam and an objective lens disposed to receive the excitation beam, direct the excitation beam to a specimen, and receive emission light emitted by the specimen in response to the excitation beam. A plurality of detection channels includes optics configured to receive at least a portion of the emission light. A first dichroic filter can be disposed to reflect the excitation beam into the objective lens and to transmit the emission light, and a second dichroic filter can be disposed to receive the transmitted emission light, transmit a first portion of the transmitted emission light to a first channel of the plurality of channels, and reflect a second portion of the transmitted emission light to a second channel of the plurality of channels.
    Type: Application
    Filed: January 15, 2021
    Publication date: July 22, 2021
    Inventors: Minghao Guo, Michael Previte, Steven Xiangling Chen, Chunhong Zhou
  • Publication number: 20210223530
    Abstract: Multi-channel fluorescence microscopes and optical systems may include a light source configured to emit an excitation beam and an objective lens disposed to receive the excitation beam, direct the excitation beam to a specimen, and receive emission light emitted by the specimen in response to the excitation beam. A plurality of detection channels include optics configured to receive at least a portion of the emission light. A first dichroic filter can be disposed to reflect the excitation beam into the objective lens and to transmit the emission light, and a second dichroic filter can be disposed to receive the transmitted emission light, transmit a first portion of the transmitted emission light to a first channel of the plurality of channels, and reflect a second portion of the transmitted emission light to a second channel of the plurality of channels.
    Type: Application
    Filed: June 15, 2020
    Publication date: July 22, 2021
    Inventors: Minghao Guo, Michael Previte, Steven Xiangling Chen, Chunhong Zhou
  • Publication number: 20210223161
    Abstract: Imaging systems and methods comprising imaging a first interior surface and a second interior surface of a flow cell are described. In some embodiments, the imaging systems may comprise: a) an objective lens; b) at least one image sensor; and c) at least one tube lens disposed in an optical path between the objective lens and the at least one image sensor; wherein the at least one tube lens is configured to correct imaging performance such that images of the first interior surface of the flow cell and the second interior surface of the flow cell have substantially the same optical resolution.
    Type: Application
    Filed: September 9, 2020
    Publication date: July 22, 2021
    Inventors: Steve Xiangling CHEN, Minghao GUO, Michael PREVITE, Chunhong ZHOU, Derek FULLER
  • Publication number: 20210222239
    Abstract: Methods and systems for sequencing a nucleic acid molecule are described that comprise imaging a first surface and an axially-displaced second surface using a compensation-free optical system, the system comprising an objective lens and at least one image sensor, wherein said optical system has a numerical aperture (NA) of less than 0.6 and a field-of-view (FOV) of greater than 1.0 mm2; and) processing the images of the first surface and the axially-displaced second surface to correct for optical aberration such that the images of the first surface and the axially-displaced second surface have substantially the same optical resolution.
    Type: Application
    Filed: September 9, 2020
    Publication date: July 22, 2021
    Inventors: Steve Xiangling CHEN, Minghao GUO, Michael PREVITE, Chunhong ZHOU, Derek FULLER
  • Publication number: 20210222238
    Abstract: Fluorescence imaging system designs are described that provide larger fields-of-view, increased spatial resolution, improved modulation transfer and image quality, higher spatial sampling frequency, faster transitions between image capture when repositioning the sample plane to capture a series of images (e.g., of different fields-of-view), and improved imaging system duty cycle, and thus enable higher throughput image acquisition and analysis for genomics and other imaging applications.
    Type: Application
    Filed: September 9, 2020
    Publication date: July 22, 2021
    Inventors: Steve Xiangling CHEN, Minghao GUO, Michael PREVITE, Chunhong ZHOU, Derek FULLER
  • Patent number: 11060138
    Abstract: Methods and systems for sequencing a nucleic acid molecule are described that comprise imaging a first surface and an axially-displaced second surface using a compensation-free optical system, the system comprising an objective lens and at least one image sensor, wherein said optical system has a numerical aperture (NA) of less than 0.6 and a field-of-view (FOV) of greater than 1.0 mm2; and) processing the images of the first surface and the axially-displaced second surface to correct for optical aberration such that the images of the first surface and the axially-displaced second surface have substantially the same optical resolution.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: July 13, 2021
    Assignee: ELEMENT BIOSCIENCES, INC.
    Inventors: Steve Xiangling Chen, Minghao Guo, Michael Previte, Chunhong Zhou, Derek Fuller
  • Patent number: 11053540
    Abstract: Fluorescence imaging system designs are described that provide larger fields-of-view, increased spatial resolution, improved modulation transfer and image quality, higher spatial sampling frequency, faster transitions between image capture when repositioning the sample plane to capture a series of images (e.g., of different fields-of-view), and improved imaging system duty cycle, and thus enable higher throughput image acquisition and analysis for genomics and other imaging applications.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: July 6, 2021
    Assignee: ELEMENT BIOSCIENCES, INC.
    Inventors: Steve Xiangling Chen, Minghao Guo, Michael Previte, Chunhong Zhou, Derek Fuller
  • Publication number: 20210164040
    Abstract: This disclosure provides a method of determining a sequence of nucleotides for a nucleic acid template. The method can include the steps of contacting the nucleic acid template with a conformationally labeled polymerase and at least four different nucleotide species under conditions wherein the conformationally labeled polymerase catalyzes sequential addition of the nucleotide species to form a nucleic acid complement of the nucleic acid template, wherein the sequential addition of each different nucleotide species produces a conformational signal change from the conformationally labeled polymerase and wherein the rate or time duration for the conformational signal change is distinguishable for each different nucleotide species; detecting a series of changes in the signal from the conformationally labeled polymerase under the conditions; and determining the rates or time durations for the changes in the signal, thereby determining the sequence of nucleotides for the nucleic acid template.
    Type: Application
    Filed: November 6, 2020
    Publication date: June 3, 2021
    Applicant: Illumina, Inc.
    Inventors: Molly He, Cheng-Yao Chen, Eric Kool, Mostafa Ronaghi, Michael Previte, Rigo Pantoja
  • Patent number: 11008612
    Abstract: Provided herein are systems and methods for nucleotide incorporation reactions. The systems comprise polymerases having altered nucleotide incorporation kinetics and are linked to an energy transfer donor moiety, and nucleotide molecules linked with at least one energy transfer acceptor moiety. The donor and acceptor moieties undergo energy transfer when the polymerase and nucleotide are proximal to each other during nucleotide binding and/or nucleotide incorporation. As the donor and acceptor moieties undergo energy transfer, they generate an energy transfer signal which can be associated with nucleotide binding or incorporation. Detecting a time sequence of the generated signals, or the change in the signals, can be used to determine the order of the incorporated nucleotides, and can therefore be used to deduce the sequence of the target molecule.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: May 18, 2021
    Assignee: Life Technologies Corporation
    Inventors: Joseph Beechem, Theo Nikiforov, Vi-En Choong, Xinzhan Peng, Guobin Luo, Cheng-Yao Chen, Michael Previte
  • Publication number: 20210139981
    Abstract: Multivalent binding compositions including a particle-nucleotide conjugate having a plurality of copies of a nucleotide attached to the particle are described. The multivalent binding compositions allow one to localize detectable signals to active regions of biochemical interaction, e.g., sites of protein-protein interaction, protein-nucleic acid interaction, nucleic acid hybridization, or enzymatic reaction, and can be used to identify sites of base incorporation in elongating nucleic acid chains during polymerase reactions and to provide improved base discrimination for sequencing and array based applications.
    Type: Application
    Filed: January 22, 2021
    Publication date: May 13, 2021
    Inventors: Sinan ARSLAN, Chunhong ZHOU, Molly Min HE, Matthew KELLINGER, Adeline Huizhen MAH, Michael PREVITE, Lei SUN
  • Patent number: 10995324
    Abstract: Presented herein are methods and compositions for thermostable DNA polymerases that may be used to improve the PCR process and to improve the results obtained when using a thermostable DNA polymerase in other recombinant techniques such as DNA sequencing, nick-translation, and reverse transcription.
    Type: Grant
    Filed: May 6, 2019
    Date of Patent: May 4, 2021
    Assignee: Illumina, Inc.
    Inventors: Misha Golynskiy, Molly He, Michael Previte, BeiBei Wang, Sergio Peisajovich
  • Publication number: 20210123911
    Abstract: Multivalent binding compositions including a particle-nucleotide conjugate having a plurality of copies of a nucleotide attached to the particle are described. The multivalent binding compositions allow one to localize detectable signals to active regions of biochemical interaction, e.g., sites of protein-protein interaction, protein-nucleic acid interaction, nucleic acid hybridization, or enzymatic reaction, and can be used to identify sites of base incorporation in elongating nucleic acid chains during polymerase reactions and to provide improved base discrimination for sequencing and array based applications.
    Type: Application
    Filed: October 5, 2020
    Publication date: April 29, 2021
    Inventors: Sinan ARSLAN, Molly HE, Matthew KELLINGER, Jake LEVIEUX, Michael PREVITE, Junhua ZHAO, Su ZHANG, Tyler LOPEZ
  • Publication number: 20210123098
    Abstract: Provided are methods and systems for analyzing nucleic acids in a biological sample in a manner that retains the spatial and/or cellular origin of the nucleic acids within the biological sample. Compositions and kits are also provided that enable the methods and systems of the instant disclosure.
    Type: Application
    Filed: January 8, 2021
    Publication date: April 29, 2021
    Inventors: Michael PREVITE, Molly HE, Junhua ZHAO, Hui Zhen MAH, Chunhong ZHOU, Sinan ARSLAN, Matthew KELLINGER, Lorenzo BERTI, Steve CHEN
  • Publication number: 20210121882
    Abstract: Flow cell devices, cartridges, and systems are described that provide reduced manufacturing complexity, lowered consumable costs, and flexible system throughput for nucleic acid sequencing and other chemical or biological analysis applications. The flow cell device can include a capillary flow cell device or a microfluidic flow cell device.
    Type: Application
    Filed: October 28, 2020
    Publication date: April 29, 2021
    Inventors: Minghao GUO, Leon Zilun ZHANG, Chunhong ZHOU, Matthew KELLINGER, Michael PREVITE
  • Patent number: 10982280
    Abstract: Multivalent binding compositions including a particle-nucleotide conjugate having a plurality of copies of a nucleotide attached to the particle are described. The multivalent binding compositions allow one to localize detectable signals to active regions of biochemical interaction, e.g., sites of protein-protein interaction, protein-nucleic acid interaction, nucleic acid hybridization, or enzymatic reaction, and can be used to identify sites of base incorporation in elongating nucleic acid chains during polymerase reactions and to provide improved base discrimination for sequencing and array based applications.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: April 20, 2021
    Assignee: ELEMENT BIOSCIENCES, INC.
    Inventors: Sinan Arslan, Chunhong Zhou, Molly Min He, Matthew Kellinger, Adeline Huizhen Mah, Michael Previte, Lei Sun
  • Publication number: 20210072234
    Abstract: Multivalent binding compositions including a particle-nucleotide conjugate having a plurality of copies of a nucleotide attached to the particle are described. The multivalent binding compositions allow one to localize detectable signals to active regions of biochemical interaction, e.g., sites of protein-protein interaction, protein-nucleic acid interaction, nucleic acid hybridization, or enzymatic reaction, and can be used to identify sites of base incorporation in elongating nucleic acid chains during polymerase reactions and to provide improved base discrimination for sequencing and array based applications.
    Type: Application
    Filed: July 22, 2020
    Publication date: March 11, 2021
    Inventors: Sinan Arslan, Molly HE, Matthew KELLINGER, Jake LEVIEUX, Michael PREVITE, Junhua ZHAO, Su ZHANG
  • Publication number: 20210040534
    Abstract: Methods and formulations for preparing low non-specific binding surfaces are described, and the prepared surface can provide improved performance for nucleic acid detection and base calling applications. The surface provides more accurate nucleic acid detection, enhanced contrast to noise ratio, and better data collection.
    Type: Application
    Filed: October 14, 2020
    Publication date: February 11, 2021
    Inventors: Chunhong ZHOU, Sinan ARSLAN, Molly Min HE, Matthew KELLINGER, Adeline Huizhen MAH, Michael PREVITE, Lei SUN