Patents by Inventor Michael Renne Ty Tan

Michael Renne Ty Tan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240039244
    Abstract: Implementations disclosed herein provide semiconductor resonator based optical multiplexers that achieve enhanced bandwidth range of light emitted therefrom. The present disclosure integrates silicon devices into resonator structures, such as micro-ring resonators, that couples a side mode with a lasing mode and resonantly amplifies coupled light to output light having an enhanced bandwidth with respect to the lasing mode. In some examples, the optical multiplexers disclosed herein include a bus waveguide; a first resonator structure optically coupled to the bus waveguide and comprising an optical amplification mechanism that generates light and a single mode filter to force the generated light into single-mode operation; and a second resonator structure optically coupled to the first resonator structure and comprising a phase-tuning mechanism. The phase-tuning mechanism can be controlled to detune phase of light in the second resonator relative to the light in the first resonator.
    Type: Application
    Filed: July 27, 2022
    Publication date: February 1, 2024
    Inventors: STANLEY CHEUNG, DI LIANG, RAYMOND G. BEAUSOLEIL, MICHAEL RENNE TY TAN, WAYNE VICTOR SORIN
  • Patent number: 11850791
    Abstract: In one example, a device for printing a three-dimensional object is described. The device may include at least one material application unit to deposit at least one material for a voxel of the three-dimensional object, a vertical cavity surface emitting laser array comprising a plurality of vertical cavity surface emitting lasers, the plurality of vertical cavity surface emitting lasers including a first vertical cavity surface emitting laser to operate at a first wavelength and a second vertical cavity surface emitting laser to operate at a second wavelength, and a processor to control a deposition of the at least one material for the voxel via the at least one material application unit and to control an application of electromagnetic energy via at least one of the plurality of vertical cavity surface emitting lasers to the voxel to alter at least one property of the at least one material.
    Type: Grant
    Filed: January 20, 2016
    Date of Patent: December 26, 2023
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: David George, Chandrakant Patel, Lihua Zhao, Michael Renne Ty Tan
  • Publication number: 20230283396
    Abstract: Systems and methods are provided for achieving graceful bandwidth scaling (i.e. higher data transmission rates) for Coarse Wavelength Division Multiplexing (CWDM) and CWDM-4 technologies. Examples utilize a waveband architecture built around the CWDM wavelengths. This waveband architecture adds additional wavelength transmission channels (which may equate to faster data transmission rates) while maintaining backwards compatibility with existing CWDM/CWDM-4 technologies. Examples may include waveband devices (e.g. waveband light sources, waveband transmitters, waveband receivers, waveband transceivers, etc.) designed to operate with one or more CWDM wavebands while maintaining backwards compatibility with existing CWDM-4 technologies.
    Type: Application
    Filed: March 4, 2022
    Publication date: September 7, 2023
    Inventors: SAGI VARGHESE MATHAI, Michael Renne ty TAN, Wayne Victor SORIN
  • Patent number: 11588298
    Abstract: Coupled-cavity vertical cavity surface emitting lasers (VCSELs) are provided by the present disclosure. The coupled-cavity VCSEL can comprise a VCSEL having a first mirror, a gain medium disposed above the first mirror, and a second mirror disposed above the gain medium, wherein a first cavity is formed by the first mirror and the second mirror. A second cavity is optically coupled to the VCSEL and configured to reflect light emitted from the VCSEL back into the first cavity of the VCSEL. In some embodiments, the second cavity can be an external cavity optically coupled to the VCSEL through a coupling component. In some embodiments, the second cavity can be integrated with the VCSEL to form a monolithic coupled-cavity VCSEL. A feedback circuit can control operation of the coupled-cavity VCSEL so the output comprises a target high frequency signal.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: February 21, 2023
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Stanley Cheung, Michael Renne Ty Tan, Binhao Wang, Wayne Victor Sorin, Chao-Kun Lin
  • Patent number: 11437323
    Abstract: A silicon interposer may include an on-chip DC blocking capacitor, comprising: a first electrical connection to couple to a supply voltage and to cathodes of a plurality of photodiodes formed in a two-dimensional photodiode array on a first substrate, and a second electrical connection to couple to ground and to ground inputs of a plurality of transimpedance amplifiers on a second substrate; wherein the on-chip DC blocking capacitor is configured to be shared among a plurality of receiver circuits comprising the plurality of photodiodes and the plurality of transimpedance amplifiers; and wherein the silicon interposer comprises a substrate separate from the first substrate and the second substrate.
    Type: Grant
    Filed: June 3, 2020
    Date of Patent: September 6, 2022
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Binhao Wang, Wayne Victor Sorin, Michael Renne Ty Tan
  • Patent number: 11415763
    Abstract: Pluggable optical transceiver modules are described herein that are specifically configured to preclude use of fiber jumpers inside of the module. Pluggable optical transceiver modules implement a rigid-plane jumper that provides an opto-mechanical interface between an external fiber cable (attached to the pluggable optical transceiver module) and the optical transceiver in a manner that does not require the fiber jumper, while ensuring reduced optical loss. In some embodiments one or more rigid waveguide plates act as an opto-mechanical coupling between the external fiber cable and on-board opto-electrical components (e.g., optical transceiver). For example, the rigid waveguide plates are coupled to a faceplate connector, and a CWDM block that is in turn optically coupled to the optical socket. In some embodiments, the CWDM block is directly attached to the rigid waveguide plates. In some embodiments, the CWDM block is indirectly attached to the rigid waveguide plates using a half periscope.
    Type: Grant
    Filed: August 7, 2020
    Date of Patent: August 16, 2022
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Kevin B. Leigh, Sagi Varghese Mathai, Michael Renne Ty Tan
  • Patent number: 11391898
    Abstract: Pluggable optical transceiver modules are described herein that are specifically configured to preclude use of fiber jumpers inside of the module. The pluggable optical transceiver modules include an on-board application-specific integrated circuit (ASIC), optical transceiver, and an optical socket allowing a fiber to connect to the optical transceiver. Pluggable optical transceiver modules implement an opto-mechanical interface between an external fiber cable (attached to the pluggable optical transceiver module) and the optical transceiver in manner that does not require the fiber jumper, while ensuring tight alignment tolerances. In some embodiments, optical transceiver modules are designed to achieve a direct opt-mechanical coupling between the external fiber cable and on-board opto-electrical components (e.g., optical transceiver).
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: July 19, 2022
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Sagi Varghese Mathai, Paul Kessler Rosenberg, Michael Renne Ty Tan, Kevin B. Leigh
  • Patent number: 11275222
    Abstract: Optoelectronic systems and methods of assembly thereof are described herein according to the present disclosure. An example of an optoelectronic described herein includes a substrate and an interposer coupled to the substrate including one or more optical emitters and one or more photodetectors to be mounted thereto. The interposer is fabricated with one or more mechanical datums located on the interposer with respect to flip chip pads to position and couple the optical emitters and photodetectors to the interposer. The optoelectronic system also includes an optical connector and an optical socket that includes one or more mechanical datums corresponding to the mechanical datums of the interposer. The optical socket is configured to align the optical connector with the optical emitters and the photodetectors when the optical socket is coupled to the substrate and the optical connector is received within the optical socket.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: March 15, 2022
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Paul Kessler Rosenberg, Sagi Varghese Mathai, Kevin B. Leigh, Michael Renne Ty Tan
  • Publication number: 20220043223
    Abstract: Pluggable optical transceiver modules are described herein that are specifically configured to preclude use of fiber jumpers inside of the module. Pluggable optical transceiver modules implement a rigid-plane jumper that provides an opto-mechanical interface between an external fiber cable (attached to the pluggable optical transceiver module) and the optical transceiver in a manner that does not require the fiber jumper, while ensuring reduced optical loss. In some embodiments one or more rigid waveguide plates act as an opto-mechanical coupling between the external fiber cable and on-board opto-electrical components (e.g., optical transceiver). For example, the rigid waveguide plates are coupled to a faceplate connector, and a CWDM block that is in turn optically coupled to the optical socket. In some embodiments, the CWDM block is directly attached to the rigid waveguide plates. In some embodiments, the CWDM block is indirectly attached to the rigid waveguide plates using a half periscope.
    Type: Application
    Filed: August 7, 2020
    Publication date: February 10, 2022
    Inventors: KEVIN B. LEIGH, SAGI VARGHESE MATHAI, MICHAEL RENNE TY TAN
  • Publication number: 20210399522
    Abstract: Coupled-cavity vertical cavity surface emitting lasers (VCSELs) are provided by the present disclosure. The coupled-cavity VCSEL can comprise a VCSEL having a first mirror, a gain medium disposed above the first mirror, and a second mirror disposed above the gain medium, wherein a first cavity is formed by the first mirror and the second mirror. A second cavity is optically coupled to the VCSEL and configured to reflect light emitted from the VCSEL back into the first cavity of the VCSEL. In some embodiments, the second cavity can be an external cavity optically coupled to the VCSEL through a coupling component. In some embodiments, the second cavity can be integrated with the VCSEL to form a monolithic coupled-cavity VCSEL. A feedback circuit can control operation of the coupled-cavity VCSEL so the output comprises a target high frequency signal.
    Type: Application
    Filed: June 23, 2020
    Publication date: December 23, 2021
    Inventors: Stanley CHEUNG, Michael Renne Ty TAN, Binhao WANG, Wayne Victor SORIN, Chao-Kun LIN
  • Publication number: 20210389533
    Abstract: Pluggable optical transceiver modules are described herein that are specifically configured to preclude use of fiber jumpers inside of the module. The pluggable optical transceiver modules include an on-board application-specific integrated circuit (ASIC), optical transceiver, and an optical socket allowing a fiber to connect to the optical transceiver. Pluggable optical transceiver modules implement an opto-mechanical interface between an external fiber cable (attached to the pluggable optical transceiver module) and the optical transceiver in manner that does not require the fiber jumper, while ensuring tight alignment tolerances. In some embodiments, optical transceiver modules are designed to achieve a direct opt-mechanical coupling between the external fiber cable and on-board opto-electrical components (e.g., optical transceiver).
    Type: Application
    Filed: June 12, 2020
    Publication date: December 16, 2021
    Inventors: SAGI VARGHESE MATHAI, PAUL KESSLER ROSENBERG, MICHAEL RENNE TY TAN, KEVIN B. LEIGH
  • Publication number: 20210384132
    Abstract: A silicon interposer may include an on-chip DC blocking capacitor, comprising: a first electrical connection to couple to a supply voltage and to cathodes of a plurality of photodiodes formed in a two-dimensional photodiode array on a first substrate, and a second electrical connection to couple to ground and to ground inputs of a plurality of transimpedance amplifiers on a second substrate; wherein the on-chip DC blocking capacitor is configured to be shared among a plurality of receiver circuits comprising the plurality of photodiodes and the plurality of transimpedance amplifiers; and wherein the silicon interposer comprises a substrate separate from the first substrate and the second substrate.
    Type: Application
    Filed: June 3, 2020
    Publication date: December 9, 2021
    Inventors: BINHAO WANG, WAYNE VICTOR SORIN, MICHAEL RENNE TY TAN
  • Patent number: 11177624
    Abstract: Examples of the present disclosure include a tunable laser comprising a waveguide including gain section. The waveguide overlies and is optically coupled to another waveguide. The another waveguide has a reflector at one end. A laser cavity is formed in the waveguides.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: November 16, 2021
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Stanley Cheung, Michael Renne Ty Tan, Wayne Sorin, Joaquin Matres Abril, Sagi Mathai
  • Publication number: 20210341690
    Abstract: Optoelectronic systems and methods of assembly thereof are described herein according to the present disclosure. An example of an optoelectronic described herein includes a substrate and an interposer coupled to the substrate including one or more optical emitters and one or more photodetectors to be mounted thereto. The interposer is fabricated with one or more mechanical datums located on the interposer with respect to flip chip pads to position and couple the optical emitters and photodetectors to the interposer. The optoelectronic system also includes an optical connector and an optical socket that includes one or more mechanical datums corresponding to the mechanical datums of the interposer. The optical socket is configured to align the optical connector with the optical emitters and the photodetectors when the optical socket is coupled to the substrate and the optical connector is received within the optical socket.
    Type: Application
    Filed: April 30, 2020
    Publication date: November 4, 2021
    Inventors: Paul Kessler Rosenberg, Sagi Varghese Mathai, Kevin B. Leigh, Michael Renne Ty Tan
  • Publication number: 20210141171
    Abstract: Examples herein relate to optical modules. In particular, implementations herein relate to optical modules that include top-emitting VCSELs and/or top-entry photodetectors. The optical modules include a first interposer having opposing first and second sides and a second interposer having opposing first and second sides. The optical modules include a plurality of top-emitting vertical-cavity surface-emitting lasers (VCSELs) coupled to the second interposer and a plurality of electrical conductors forming electrical paths between electrical contacts of the top-emitting VCSELs and the second side of the second interposer. The VCSELs are configured to emit optical signals having different wavelengths. The optical signals are configured to be combined and transmitted over a single optical fiber.
    Type: Application
    Filed: November 7, 2019
    Publication date: May 13, 2021
    Inventors: Sagi Varghese Mathai, Paul Kessler Rosenberg, Wayne Victor Sorin, Michael Renne Ty Tan
  • Patent number: 11002912
    Abstract: In the examples provided herein, a system includes an input waveguide, where a first end of the input waveguide is coupled to a light-emitting optical transmitter to allow the emitted light to enter the input waveguide, and a first ring resonator tunable to be resonant at a first resonant wavelength, wherein the first ring resonator is positioned near the input waveguide to couple a light at the first resonant wavelength from the input waveguide to the first ring resonator. The system also has a bus waveguide positioned to couple the light at the first resonant wavelength in the first ring resonator to the bus waveguide, and a mechanism to wavelength-tune the first ring resonator to a particular wavelength.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: May 11, 2021
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Joaquin Matres, Wayne Victor Sorin, Sagi Mathai, Lars Helge Thylen, Michael Renne Ty Tan
  • Patent number: 11002926
    Abstract: Examples herein relate to optical modules. In particular, implementations herein relate to optical modules that include top-emitting VCSELs and/or top-entry photodetectors. The optical modules include a first interposer having opposing first and second sides and a second interposer having opposing first and second sides. The optical modules include a plurality of top-emitting vertical-cavity surface-emitting lasers (VCSELs) coupled to the second interposer and a plurality of electrical conductors forming electrical paths between electrical contacts of the top-emitting VCSELs and the second side of the second interposer. The VCSELs are configured to emit optical signals having different wavelengths. The optical signals are configured to be combined and transmitted over a single optical fiber.
    Type: Grant
    Filed: November 7, 2019
    Date of Patent: May 11, 2021
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Sagi Varghese Mathai, Paul Kessler Rosenberg, Wayne Victor Sorin, Michael Renne Ty Tan
  • Patent number: 10985531
    Abstract: A VCSEL device includes a substrate and a first DBR structure disposed on the substrate. The VCSEL device further includes a cathode contact disposed on a top surface of the first DBR structure. In addition, the VCSEL device includes a VCSEL mesa that is disposed on the top surface of the first DBR structure. The VCSEL mesa includes a quantum well, a non-circularly-shaped oxide aperture region disposed above the quantum well, and a second DBR structure disposed above the non-circularly-shaped oxide aperture region. In addition, the VCSEL mesa includes a selective polarization structure disposed above the second DBR structure and an anode contact disposed above the selective polarization structure.
    Type: Grant
    Filed: January 27, 2019
    Date of Patent: April 20, 2021
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Binhao Wang, Wayne Sorin, Michael Renne Ty Tan, Sagi Varghese Mathai, Stanley Cheung
  • Patent number: 10976508
    Abstract: Optical modules are disclosed. An example optical module includes a substrate comprising a grating coupler, an optical connector removably coupled to the substrate adjacent the grating coupler to optically couple the optical connector and the grating coupler and an integrated circuit coupled to the substrate.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: April 13, 2021
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Sagi Varghese Mathai, Wayne Victor Sorin, Michael Renne Ty Tan
  • Patent number: 10978854
    Abstract: In example implementations of a vertical-cavity surface-emitting laser (VCSEL), the VCSEL includes a p-type distributed Bragg reflector (p-DBR) layer and a p-type ohmic (p-ohmic) contact layer adjacent to the p-DBR layer. The p-DBR layer may include an oxide aperture and the p-ohmic contact layer may have an opening that is aligned with the oxide aperture. The opening may be filled with a dielectric material. A metal layer may be coupled to the p-ohmic contact layer and encapsulate the dielectric material.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: April 13, 2021
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Sagi Mathai, Michael Renne Ty Tan, Wayne Victor Sorin