Patents by Inventor Michael Renne Ty Tan

Michael Renne Ty Tan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180275348
    Abstract: In the examples provided herein, a system includes a loop waveguide; and a grating coupler formed on the loop waveguide to couple light impinging on the grating coupler having a first polarization into the loop waveguide in a first direction, and to couple light having a second polarization, orthogonal to the first polarization, into the loop waveguide in a second direction. The system also includes a ring resonator positioned near the loop waveguide tuned to have a resonant wavelength at a first wavelength to couple light at the first wavelength out of the loop waveguide into the ring resonator. An output waveguide positioned near the ring resonator couples light out of the ring resonator into the output waveguide; and a photodetector detects light propagating out of a first end and a second end of the output waveguide.
    Type: Application
    Filed: December 11, 2015
    Publication date: September 27, 2018
    Inventors: Joaquin Matres, Wayne Victor Sorin, Sagi Mathai, Lars Heige Thylen, Michael Renne Ty Tan, Marco Fiorentino
  • Patent number: 10082684
    Abstract: A high contrast grating optical modulation includes an optical modulator at a front surface of a substrate to modulate received light. The high contrast grating optical modulation further includes a high contrast grating (HCG) lens adjacent to a back surface of the substrate opposite to the front surface to focus incident light onto the optical modulator. The substrate is transparent to operational wavelengths of the focused incident light and the modulated light.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: September 25, 2018
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Sagi Varghese Mathai, David A. Fattal, Michael Renne Ty Tan, Wayne Victor Sorin
  • Publication number: 20180269973
    Abstract: Examples include generating a signal using a modulatable source. The signal may be propagated using a multi-mode fiber to receive the signal from the modulatable source. The fiber has a diameter d and a far-field divergence angle associated with the propagated signal that corresponds to a product of the diameter (d) and the far-field divergence angle. The product may be substantially between 1 micron radian and 4 micron radian. In some examples, the propagated signal may be received at a receiver from the multi-mode fiber.
    Type: Application
    Filed: May 11, 2018
    Publication date: September 20, 2018
    Inventors: Wayne V. Sorin, Michael Renne Ty Tan, Shih-Yuan Wang
  • Patent number: 10079474
    Abstract: A vertical-cavity surface-emitting laser (VCSEL) includes first reflector having a first reflectivity; a second reflector having a second reflectivity, where the second reflectivity is less than the first reflectivity; a gain region between the first and second reflectors; and a substrate having a first surface and a second surface, where the first surface is coupled to the second reflector, and where the second surface is formed into a lens to act upon light emitted the VCSEL through the substrate. The VCSEL lases in a single transverse mode.
    Type: Grant
    Filed: September 22, 2014
    Date of Patent: September 18, 2018
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Michael Renne Ty Tan, Wayne V Sorin, Sagi V Mathai
  • Publication number: 20180233881
    Abstract: In example implementations of a vertical-cavity surface-emitting laser (VCSEL), the VCSEL includes a p-type distributed Bragg reflector (p-DBR) layer end a p-type ohmic (p-ohmic) contact layer adjacent to the p-DBR layer. The p DBR layer may include an oxide aperture and the p-ohmic contact layer may have an opening that is aligned with the oxide aperture. The opening may be filled with a dielectric material. A metal layer may be coupled to the p-ohmic contact layer and encapsulate the dielectric material.
    Type: Application
    Filed: August 10, 2015
    Publication date: August 16, 2018
    Inventors: Sagi MATHAI, Michael Renne Ty TAN, Wayne Victor SORIN
  • Patent number: 10050414
    Abstract: An array of monolithic wavelength division multiplexed (WDM) vertical cavity surface emitting lasers (VCSELs) is provided with quantum well intermixing. Each VCSEL includes a bottom distributed Bragg reflector (DBR), an upper distributed Bragg reflector, and a laser cavity therebetween. The laser cavity includes a multiple quantum well (MQW) layer sandwiched between a lower separate confinement heterostructure (SCH) and an upper SCH layer. Each MQW region experiences a different amount of quantum well intermixing and concomitantly a different lasing wavelength shift.
    Type: Grant
    Filed: January 22, 2015
    Date of Patent: August 14, 2018
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Sagi Varghese Mathai, Michael Renne Ty Tan
  • Patent number: 10048440
    Abstract: A photonic interconnect apparatus includes tunable light devices, multiplexers to multiplex optical signals produced by the tunable light devices onto optical paths, and a cyclic arrayed waveguide grating (AWG) to receive the optical signals over the optical paths, and to direct a given optical signal of the received optical signals to a selected output of a plurality of outputs of the cyclic AWG based on a wavelength of the given optical signal. A respective demultiplexer directs the given optical signal to a selected output of a plurality of outputs of the respective demultiplexer according to which coarse wavelength band the wavelength of the given optical signal is part of.
    Type: Grant
    Filed: January 29, 2015
    Date of Patent: August 14, 2018
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Mike Schlansker, Jean Tourrilhes, Michael Renne Ty Tan, Joaquin Matres, Wayne Victor Sorin
  • Patent number: 10033477
    Abstract: A system includes an optical Y-junction coupler to receive a first modulated optical signal on a wide input path of the optical Y-junction coupler and to receive a second modulated optical signal on a narrow input path of the optical Y-junction coupler, wherein the optical Y-junction coupler generates a combined optical signal from signals received on the wide input path and the narrow input path. A multimode waveguide receives the combined optical signal from the optical Y-junction coupler and propagates a spatially multiplexed optical output signal along a transmission path.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: July 24, 2018
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Alexandre M Bratkovski, Jacob Khurgin, Wayne Victor Sorin, Michael Renne Ty Tan
  • Patent number: 10033159
    Abstract: A mode-controlled laser system includes an active region to generate optical energy in response to an electric signal. The system also includes a mirror to resonate the optical energy in an optical cavity. The system also includes a HCG mode control reflector arranged in the optical cavity to control the resonated optical energy into a substantially non-Gaussian intensity profile. The resonated optical energy can be emitted as an optical signal having the substantially non-Gaussian intensity profile.
    Type: Grant
    Filed: June 20, 2013
    Date of Patent: July 24, 2018
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Wayne Victor Sorin, Michael Renne Ty Tan, David A. Fattal, Marco Fiorentino
  • Patent number: 10018788
    Abstract: A silicon photonic (SiPh) packaging assembly includes a SiPh interposer and a wafer. The SiPh interposer has one or more optical gratings disposed thereon to couple an optical signal traversing the wafer. The wafer is bonded to the interposer, with the wafer including one or more microlenses, each microlens aligned with a respective optical grating and designed to direct the optical signal traversing the wafer at a desired angle.
    Type: Grant
    Filed: October 28, 2014
    Date of Patent: July 10, 2018
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Sagi Varghese Mathai, Michael Renne Ty Tan, Wayne Victor Sorin
  • Patent number: 10007065
    Abstract: An example device includes a first semiconductor component comprising at least two lasers to emit light at a first wavelength; a second semiconductor component comprising at least two lasers to emit light at a second wavelength, the first wavelength being different from the second wavelength; and an optical multiplexer to receive light from two lasers at the first wavelength and light from two lasers at the second wavelength. The optical multiplexer component includes a first output interface to couple light from one laser at the first wavelength and light from one laser at the second wavelength to a first optical fiber, and a second output interface to couple light from one laser at the first wavelength and light from one laser at the second wavelength beams to a second optical fiber.
    Type: Grant
    Filed: October 31, 2013
    Date of Patent: June 26, 2018
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Michael Renne Ty Tan, Sagi Varghese Mathai, Georgios Panotopoulos, Paul Kessler Rosenberg, Wayne Victor Sorin
  • Publication number: 20180175587
    Abstract: An array of monolithic wavelength division multiplexing (WDM) vertical cavity surface emitting lasers (VCSELs) with spatially varying gain peak and Fabry Perot wavelength is provided. Each VCSEL includes a lower distributed Bragg reflector (DBR), a Fabry Perot tuning/current spreading layer, and a structure comprising a multiple quantum well (MQW) layer sandwiched between a lower separate confinement heterostructure (SCH) layer and an upper SCH layer. The structure is sandwiched between the DBR and the Fabry Perot tuning/current spreading layer. Each MQW experiences a different amount of quantum well intermixing and concomitantly a different wavelength shift. Each VCSEL further includes a top mirror on the Fabry Perot tuning/current spreading layer. A method is also provided for manufacturing the array.
    Type: Application
    Filed: June 4, 2015
    Publication date: June 21, 2018
    Applicant: Hewlett Packard Enterprise Development LP
    Inventors: Sagi Mathai, Michael Renne Ty Tan
  • Patent number: 9991676
    Abstract: A small-mode-volume, vertical-cavity, surface-emitting laser (VCSEL). The VCSEL includes an active structure to emit light upon injection of carriers, and two reflecting structures at least one of which is a grating reflector structure. The active structure is disposed within at least one of the reflecting structures. The reflecting structures are configured as a vertical-cavity resonator of small mode-volume. An optical-bus transmitter including a plurality of small-mode-volume VCSELs, and a system including at least one optical bus and at least one optical-bus transmitter in a digital-information processor, or a data-processing center, are also provided.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: June 5, 2018
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: David A. Fattal, Marco Fiorentino, Jingjing Li, Michael Renne Ty Tan, Wayne V. Sorin
  • Patent number: 9991961
    Abstract: Examples include generating a signal using a modulatable source. The signal may be propagated using a multi-mode fiber to receive the signal from the modulatable source. The fiber has a diameter d and a far-field divergence angle associated with the propagated signal that corresponds to a product of the diameter (d) and the far-field divergence angle. The product may be substantially between 1 micron radian and 4 micron radian. In some examples, the propagated signal may be received at a receiver from the multi-mode fiber.
    Type: Grant
    Filed: August 5, 2016
    Date of Patent: June 5, 2018
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Wayne V Sorin, Michael Renne Ty Tan, Shih-Yuan Wang
  • Patent number: 9971088
    Abstract: An optical subassembly includes a thru optical via (104) formed through a semiconductor substrate (102), an optoelectronic component (108) secured to the substrate (102) such that an active region (106) of the optoelectronic component is aligned with the thru optical via (104), and circuitry (110) formed into the substrate (102), the circuitry to connect to and operate in accordance with the optoelectronic component (108).
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: May 15, 2018
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Paul Kessler Rosenberg, Michael Renne Ty Tan, Sagi Varghese Mathai, Joseph Straznicky
  • Patent number: 9973283
    Abstract: An optical coupling system includes an optical signal source to provide an optical signal from an aperture. The system also includes a substantially planar high-contrast grating (HCG) lens to convert an optical mode of the optical signal to provide a converted optical signal having a mode-isolating intensity profile. The system further includes an optical element to receive the converted optical signal. The optical signal source and the substantially planar HCG lens can be arranged to substantially mitigate coupling of a reflected optical signal associated with the converted optical signal that is reflected from the optical element to the aperture of the optical signal source based on a reflected mode-isolating intensity profile.
    Type: Grant
    Filed: April 11, 2013
    Date of Patent: May 15, 2018
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Wayne Victor Sorin, Sonny Vo, David A. Fattal, Michael Renne Ty Tan
  • Publication number: 20180120524
    Abstract: Examples herein relate to devices with optical ports in fan-out configurations. An electrical device may have a substrate with an electrical port on a first face of the substrate and a plurality of optical ports on a second face of the substrate. The plurality of optical ports may be positioned in a fan-out configuration on the second face of the substrate. The electrical device may also have an integrated circuit with an electrical connection and a plurality of optical connections. A first face of the integrated circuit may be coupled to the substrate. The electrical connection of the integrated circuit may be communicatively coupled to the electrical port of the substrate, and the plurality of optical connections may be communicated coupled to the plurality of optical ports of the substrate.
    Type: Application
    Filed: November 1, 2016
    Publication date: May 3, 2018
    Inventors: Sagi MATHAI, Michael Renne Ty TAN, Paul Kessler ROSENBERG
  • Publication number: 20180095228
    Abstract: An example method of manufacturing an optical interface. An optical socket may be provided that has an alignment feature that is to engage an optical connector, and first solder attachment pads. A printed circuit board may be provided that has an active optical device and second solder attachment pads. The optical socket may be connected to the printed circuit board by reflowing solder between the first and second solder attachment pads. The first and second solder attachment pads, the alignment feature, and the active optical device are positioned such that, while reflowing the solder, the solder automatically forces the optical socket into an aligned position.
    Type: Application
    Filed: September 30, 2016
    Publication date: April 5, 2018
    Inventors: Paul Kessler Rosenberg, Michael Renne Ty Tan, Kevin Leigh
  • Patent number: 9921377
    Abstract: A substrate comprises multiple interposers. Each interposer includes interposer elements, where an optical device is coupled to at least some of the interposer elements; two passages formed through the interposer, where each passage is registered with respect to the interposer elements; two blind holes formed in a surface of the interposer, where each blind hole is concentric with a different passage; two annular troughs formed in the surface, each concentric with a different passage, and an annular area separates the annular troughs from an outer diameter of the corresponding concentric passage; and two spherical registration elements, where each registration element is positioned on uncured adhesive on one of the annular areas, where the passages enable a vacuum to be drawn through such that the registration elements are pulled toward the surface of the interposer to self-align to the inner diameter of the blind holes.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: March 20, 2018
    Assignee: Hewlett Packard Enterprise Department LP
    Inventors: Paul K Rosenberg, Sagi V Mathai, Michael Renne Ty Tan
  • Patent number: 9917647
    Abstract: A combination underfill-dam and electrical-interconnect structure for an opto-electronic engine. The structure includes a first plurality of electrical-interconnect solder bodies. The first plurality of electrical-interconnect solder bodies includes a plurality of electrical interconnects. The first plurality of electrical-interconnect solder bodies, is disposed to inhibit intrusion of underfill material into an optical pathway of an opto-electronic component for the opto-electronic engine. A system and an opto-electronic engine that include the combination underfill-dam and electrical interconnect structure are also provided.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: March 13, 2018
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Sagi Varghese Mathai, Michael Renne Ty Tan, Paul Kessler Rosenberg, Wayne Victor Sorin, Georgios Panotopoulos, Susant K. Patra, Joseph Straznicky