Patents by Inventor Michael S. Floyd

Michael S. Floyd has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10156882
    Abstract: An approach is provided in which a multi-core processor's first core determines whether it controls a system frequency that drives a group of cores included in the multi-core processor. When the first core is not controlling the system frequency for the group of cores, the first core uses an internal voltage control module to provide control information to the first core's programmable voltage regulator and, in turn, independently control the first core's voltage level. When the first core is controlling the system frequency, the first core receives voltage control information from pervasive control to control the first core's voltage levels.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: December 18, 2018
    Assignee: International Business Machines Corporation
    Inventors: Francesco A. Campisano, Alan J. Drake, Michael S. Floyd, David T. Hui, Pawel Owczarczyk, Marshall D. Tiner, Xiaobin Yuan
  • Patent number: 10152107
    Abstract: An approach is provided in which a multi-core processor's first core determines whether it controls a system frequency that drives a group of cores included in the multi-core processor. When the first core is not controlling the system frequency for the group of cores, the first core uses an internal voltage control module to provide control information to the first core's programmable voltage regulator and, in turn, independently control the first core's voltage level. When the first core is controlling the system frequency, the first core receives voltage control information from pervasive control to control the first core's voltage levels.
    Type: Grant
    Filed: October 27, 2015
    Date of Patent: December 11, 2018
    Assignee: International Business Machines Corporation
    Inventors: Francesco A. Campisano, Alan J. Drake, Michael S. Floyd, David T. Hui, Pawel Owczarczyk, Marshall D. Tiner, Xiaobin Yuan
  • Patent number: 10002212
    Abstract: A model-based virtual power management driven multi-chip system simulator generates utilization data and performance data with a workload model that models one or more types of workloads based on parameters that characterize the one or more types of workloads. The simulator generates thermal data and power consumption data with a power model that models power consumption at a chip-level and a system-level. The simulator then generates performance counter information with a performance model that models change of performance counters over time and at least one of the generated utilization data and the generated performance data as input to the performance model. The simulator provides this generated data as input to a driver of the simulator.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: June 19, 2018
    Assignee: International Business Machines Corporation
    Inventors: Bishop Brock, Michael S. Floyd, Erika Gunadi, Nan Ni, Srinivasan Ramani, Ken V. Vu
  • Patent number: 9952651
    Abstract: A system for adjusting a frequency of a processor is disclosed herein. The system includes a processor and a memory, where the memory includes a program configured to adjust a frequency of a multi-core processor. The operations include determining a total current and a temperature of the multi-core processor and estimating a leakage current for the multi-core processor. The operations also include calculating a switching current by subtracting the leakage current from the total current and calculating an effective switching capacitance based at least in part on the switching current. The operations also include calculating a workload activity factor by dividing the effective switching capacitance by a predetermined effective switching capacitance stored in vital product data, and enforcing a turbo frequency limit of the multi-core processor based on the workload activity factor.
    Type: Grant
    Filed: July 31, 2015
    Date of Patent: April 24, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Malcolm S. Allen-Ware, Michael S. Floyd, Joshua D. Friedrich, Charles R. Lefurgy, Kirk D. Peterson, Karthick Rajamani, Srinivasan Ramani, Todd J. Rosedahl, Gregory S. Still, Brian W. Thompto, Victor Zyuban
  • Patent number: 9778726
    Abstract: A method for adjusting a frequency of a processor is disclosed herein. In one embodiment, the method includes determining a total current and a temperature of the multi-core processor and estimating a leakage current for the multi-core processor. The method also includes calculating a switching current by subtracting the leakage current from the total current. The method also includes calculating an effective switching capacitance based at least in part on the switching current. The method also includes calculating a workload activity factor by dividing the effective switching capacitance by a predetermined effective switching capacitance stored in vital product data, and enforcing a turbo frequency limit of the multi-core processor based on the workload activity factor.
    Type: Grant
    Filed: August 24, 2015
    Date of Patent: October 3, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Malcolm S. Allen-Ware, Michael S. Floyd, Joshua D. Friedrich, Charles R. Lefurgy, Kirk D. Peterson, Karthick Rajamani, Srinivasan Ramani, Todd J. Rosedahl, Gregory S. Still, Brian W. Thompto, Victor Zyuban
  • Publication number: 20170102732
    Abstract: An approach is provided in which a multi-core processor's first core determines whether it controls a system frequency that drives a group of cores included in the multi-core processor. When the first core is not controlling the system frequency for the group of cores, the first core uses an internal voltage control module to provide control information to the first core's programmable voltage regulator and, in turn, independently control the first core's voltage level. When the first core is controlling the system frequency, the first core receives voltage control information from pervasive control to control the first core's voltage levels.
    Type: Application
    Filed: October 9, 2015
    Publication date: April 13, 2017
    Inventors: Francesco A. Campisano, Alan J. Drake, Michael S. Floyd, David T. Hui, Pawel Owczarczyk, Marshall D. Tiner, Xiaobin Yuan
  • Publication number: 20170102761
    Abstract: An approach is provided in which a multi-core processor's first core determines whether it controls a system frequency that drives a group of cores included in the multi-core processor. When the first core is not controlling the system frequency for the group of cores, the first core uses an internal voltage control module to provide control information to the first core's programmable voltage regulator and, in turn, independently control the first core's voltage level. When the first core is controlling the system frequency, the first core receives voltage control information from pervasive control to control the first core's voltage levels.
    Type: Application
    Filed: October 27, 2015
    Publication date: April 13, 2017
    Inventors: Francesco A. Campisano, Alan J. Drake, Michael S. Floyd, David T. Hui, Pawel Owczarczyk, Marshall D. Tiner, Xiaobin Yuan
  • Publication number: 20170091357
    Abstract: A model-based virtual power management driven multi-chip system simulator generates utilization data and performance data with a workload model that models one or more types of workloads based on parameters that characterize the one or more types of workloads. The simulator generates thermal data and power consumption data with a power model that models power consumption at a chip-level and a system-level. The simulator then generates performance counter information with a performance model that models change of performance counters over time and at least one of the generated utilization data and the generated performance data as input to the performance model. The simulator provides this generated data as input to a driver of the simulator.
    Type: Application
    Filed: December 13, 2016
    Publication date: March 30, 2017
    Inventors: Bishop Brock, Michael S. Floyd, Erika Gunadi, Nan Ni, Srinivasan Ramani, Ken V. Vu
  • Patent number: 9563724
    Abstract: A model-based virtual power management driven multi-chip system simulator generates utilization data and performance data with a workload model that models one or more types of workloads based on parameters that characterize the one or more types of workloads. The simulator generates thermal data and power consumption data with a power model that models power consumption at a chip-level and a system-level. The simulator then generates performance counter information with a performance model that models change of performance counters over time and at least one of the generated utilization data and the generated performance data as input to the performance model. The simulator provides this generated data as input to a driver of the simulator.
    Type: Grant
    Filed: September 28, 2013
    Date of Patent: February 7, 2017
    Assignee: International Business Machines Corporation
    Inventors: Bishop Brock, Michael S. Floyd, Erika Gunadi, Nan Ni, Srinivasan Ramani, Ken V. Vu
  • Publication number: 20170031415
    Abstract: A system for adjusting a frequency of a processor is disclosed herein. The system includes a processor and a memory, where the memory includes a program configured to adjust a frequency of a multi-core processor. The operations include determining a total current and a temperature of the multi-core processor and estimating a leakage current for the multi-core processor. The operations also include calculating a switching current by subtracting the leakage current from the total current and calculating an effective switching capacitance based at least in part on the switching current. The operations also include calculating a workload activity factor by dividing the effective switching capacitance by a predetermined effective switching capacitance stored in vital product data, and enforcing a turbo frequency limit of the multi-core processor based on the workload activity factor.
    Type: Application
    Filed: July 31, 2015
    Publication date: February 2, 2017
    Inventors: Malcolm S. ALLEN-WARE, Michael S. FLOYD, Joshua D. FRIEDRICH, Charles R. LEFURGY, Kirk D. PETERSON, Karthick RAJAMANI, Srinivasan RAMANI, Todd J. ROSEDAHL, Gregory S. STILL, Brian W. THOMPTO, Victor ZYUBAN
  • Publication number: 20170031417
    Abstract: A method for adjusting a frequency of a processor is disclosed herein. In one embodiment, the method includes determining a total current and a temperature of the multi-core processor and estimating a leakage current for the multi-core processor. The method also includes calculating a switching current by subtracting the leakage current from the total current. The method also includes calculating an effective switching capacitance based at least in part on the switching current. The method also includes calculating a workload activity factor by dividing the effective switching capacitance by a predetermined effective switching capacitance stored in vital product data, and enforcing a turbo frequency limit of the multi-core processor based on the workload activity factor.
    Type: Application
    Filed: August 24, 2015
    Publication date: February 2, 2017
    Inventors: Malcolm S. ALLEN-WARE, Michael S. FLOYD, Joshua D. FRIEDRICH, Charles R. LEFURGY, Kirk D. PETERSON, Karthick RAJAMANI, Srinivasan RAMANI, Todd J. ROSEDAHL, Gregory S. STILL, Brian W. THOMPTO, Victor ZYUBAN
  • Patent number: 9465373
    Abstract: A mechanism is provided for implementing an operational parameter change within the data processing system based on an identified degradation. One or more degradations existing in the data processing system are identified based on a set of degradation values obtained from a set of degradation sensors. A determination is made as to whether one or more operational parameters need to be modified based on the one or more identified degradations. Responsive to determining that the one or more operational parameters need to be modified based on the one or more identified degradations, an input change is implemented to a one or more control devices in order that the one or more operational parameters are modified.
    Type: Grant
    Filed: September 17, 2013
    Date of Patent: October 11, 2016
    Assignee: International Business Machines Corporation
    Inventors: Malcolm S. Allen-Ware, Alan J. Drake, Michael S. Floyd, Tilman Gloekler, Charles R. Lefurgy, Karthick Rajamani
  • Patent number: 9459599
    Abstract: A mechanism is provided for implementing an operational parameter change within the data processing system based on an identified degradation. One or more degradations existing in the data processing system are identified based on a set of degradation values obtained from a set of degradation sensors. A determination is made as to whether one or more operational parameters need to be modified based on the one or more identified degradations. Responsive to determining that the one or more operational parameters need to be modified based on the one or more identified degradations, an input change is implemented to a one or more control devices in order that the one or more operational parameters are modified.
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: October 4, 2016
    Assignee: International Business Machines Corporation
    Inventors: Malcolm S. Allen-Ware, Alan J. Drake, Michael S. Floyd, Tilman Gloekler, Charles R. Lefurgy, Karthick Rajamani
  • Patent number: 9395782
    Abstract: An approach for power supply noise mitigation on a processor is provided. In one aspect, the approach comprises a central computing unit operatively coupled to the processor to execute program operations. The approach further comprises a calibration circuit adapted to determine a first threshold on the processor to be used for comparison performed dynamically through the use of a detection circuit. A detection circuit adapted to dynamically monitor system operation of the processor and indicate if the first threshold is violated and a counting circuit adapted to prevent voltage from drooping if one or more voltage sensing measurements violates the first threshold are also provided.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: July 19, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Robert W. Berry, Jr., Michael S. Floyd, Jarom Pena, Ryan J. Pennington, Catherine Sherry
  • Patent number: 9354943
    Abstract: According to an aspect, power management of a multi-core processing system includes determining workload characteristics in the multi-core processing system. A power adjustment scenario is identified based on the workload characteristics. A predetermined actuation order for at least two power adjustment actuators is identified based on the power adjustment scenario. Based on the predetermined actuation order, it is determined whether there is an adequate adjustment capacity for a power adjustment action associated with one of the at least two power adjustment actuators. The power adjustment action is initiated based on the predetermined actuation order and determining that the adequate adjustment capacity is available.
    Type: Grant
    Filed: March 19, 2014
    Date of Patent: May 31, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Pradip Bose, Alper Buyuktosunoglu, Michael S. Floyd, Heather L. Hanson, Hans M. Jacobson, Karthick Rajamani, Srinivasan Ramani, Todd J. Rosedahl, Augusto J. Vega
  • Patent number: 9164563
    Abstract: An approach for power supply noise mitigation on a processor is provided. In one aspect, the approach comprises a central computing unit operatively coupled to the processor to execute program operations. The approach further comprises a calibration circuit adapted to determine a first threshold on the processor to be used for comparison performed dynamically through the use of a detection circuit. A detection circuit adapted to dynamically monitor system operation of the processor and indicate if the first threshold is violated and a counting circuit adapted to prevent voltage from drooping if one or more voltage sensing measurements violates the first threshold are also provided.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: October 20, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Robert W. Berry, Jr., Michael S. Floyd, Jarom Pena, Ryan J. Pennington, Catherine Sherry
  • Patent number: 9146772
    Abstract: In the management of a processor, logical operation activity is monitored for increases from a low level to a high level during a sampling window across multiple cores sharing a common supply rail, with at least one decoupling capacitor along the common supply rail. Responsive to detecting the increase in logical operation activity from the low level to the high level during the sampling window, the processor limits the logical operations executed on the cores during a lower activity period to a level of logical operations set between the low level and a medium level, where the medium level is an amount between the low level and the high level. Responsive to the lower activity period ending, the processor gradually decreases the limit on the logical operations to resume normal operations.
    Type: Grant
    Filed: October 18, 2013
    Date of Patent: September 29, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Lee E. Eisen, Michael S. Floyd, Thomas Strach, Huajun Wen, Tingdong Zhou
  • Publication number: 20150268710
    Abstract: According to an aspect, power management of a multi-core processing system includes determining workload characteristics in the multi-core processing system. A power adjustment scenario is identified based on the workload characteristics. A predetermined actuation order for at least two power adjustment actuators is identified based on the power adjustment scenario. Based on the predetermined actuation order, it is determined whether there is an adequate adjustment capacity for a power adjustment action associated with one of the at least two power adjustment actuators. The power adjustment action is initiated based on the predetermined actuation order and determining that the adequate adjustment capacity is available.
    Type: Application
    Filed: March 19, 2014
    Publication date: September 24, 2015
    Applicant: International Business Machines Corporation
    Inventors: Pradip Bose, Alper Buyuktosunoglu, Michael S. Floyd, Heather L. Hanson, Hans M. Jacobson, Karthick Rajamani, Srinivasan Ramani, Todd J. Rosedahl, Augusto J. Vega
  • Patent number: 9141421
    Abstract: In the management of a processor, logical operation activity is monitored for increases from a low level to a high level during a sampling window across multiple cores sharing a common supply rail, with at least one decoupling capacitor along the common supply rail. Responsive to detecting the increase in logical operation activity from the low level to the high level during the sampling window, the processor limits the logical operations executed on the cores during a lower activity period to a level of logical operations set between the low level and a medium level, where the medium level is an amount between the low level and the high level. Responsive to the lower activity period ending, the processor gradually decreases the limit on the logical operations to resume normal operations.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: September 22, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Lee E. Eisen, Michael S. Floyd, Thomas Strach, Huajun Wen, Tingdong Zhou
  • Patent number: 9117011
    Abstract: Guardband validation for a device having a critical path monitor involves first applying multiple calibration settings to the monitor during functional operation of the processor, and recording corresponding guardbands which result in reduced timing margin. A desired guardband can later be selected for validation. The calibration settings can be based on delays for a critical path. A calibration test procedure can be used to determine the calibration delays for different operating frequencies or voltages that are set or, alternatively, the calibration delays can be set and resultant frequencies measured which are used to calculate the guardband amounts. The critical path monitor may include a modified calibration delay circuit which provides a calibrated delay signal to a critical path synthesis circuit, and the multiple calibration settings can be applied by changing delay taps of the calibration delay circuit in response to a bias delay signal from a power management controller.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: August 25, 2015
    Assignee: International Business Machines Corporation
    Inventors: Robert W. Berry, Jr., Alan J. Drake, Michael S. Floyd, Richard L. Willaman