Patents by Inventor Michael Schnall-Levin

Michael Schnall-Levin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10928386
    Abstract: The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing and analyte characterization from a single cell. Such polynucleotide processing may be useful for a variety of applications. The compositions, methods, systems, and devices disclosed herein generally describe barcoded oligonucleotides, which can be bound to a bead, such as a gel bead, useful for characterizing one or more analytes including, for example, protein (e.g., cell surface or intracellular proteins), genomic DNA, epigenetic information (e.g., accessible chromatin, DNA methylation), and RNA molecules (e.g., mRNA or CRISPR guide RNAs). In some cases, the disclosed methods comprise analysis of analytes from a cell using a cell bead.
    Type: Grant
    Filed: April 4, 2019
    Date of Patent: February 23, 2021
    Assignee: 10X GENOMICS, INC.
    Inventors: Zahra Kamila Belhocine, Andrew D. Price, Michael Schnall-Levin
  • Publication number: 20210010070
    Abstract: The present disclosure relates to materials and methods for spatially analyzing nucleic acids that have been fragmented with a transposase enzyme, alone or in combination with other types of analytes.
    Type: Application
    Filed: May 18, 2020
    Publication date: January 14, 2021
    Inventors: Michael Schnall-Levin, Michael Ybarra Lucero, Tarjei Sigurd Mikkelsen, Patrik Stahl, Jonas Frisen, Maja Marklund, Enric Llorens
  • Publication number: 20210002721
    Abstract: This disclosure provides methods and compositions for sample processing, particularly for sequencing applications. Included within this disclosure are bead compositions, such as diverse libraries of beads attached to large numbers of oligonucleotides containing barcodes. Often, the beads provides herein are degradable. For example, they may contain disulfide bonds that are susceptible to reducing agents. The methods provided herein include methods of making libraries of barcoded beads as well as methods of combining the beads with a sample, such as by using a microfluidic device.
    Type: Application
    Filed: April 9, 2020
    Publication date: January 7, 2021
    Inventors: Christopher Hindson, Michael Schnall-Levin, Andrew Price, Paul Hardenbol, Yuan Li
  • Publication number: 20200407781
    Abstract: The present disclosure relates to materials and methods for spatially analyzing nucleic acids that have been fragmented with a transposase enzyme, alone or in combination with other types of analytes.
    Type: Application
    Filed: May 18, 2020
    Publication date: December 31, 2020
    Inventors: Michael Schnall-Levin, Michael Ybarra Lucero, Tarjei Sigurd Mikkelsen, Patrik Stahl, Jonas Frisen, Maja Marklund, Enric Llorens
  • Publication number: 20200399631
    Abstract: The present disclosure relates to methods and systems for sample processing and analyzing when the total quantity of input sample is low or when a target of interest is present as a relatively minor or rare population within the overall sample. The disclosure particularly relates to analyzing nucleic acid samples, including samples where a target nucleic acid of interest is present as a relatively low proportion of the overall nucleic acids.
    Type: Application
    Filed: December 23, 2019
    Publication date: December 24, 2020
    Inventors: Mirna Jarosz, Christopher Hindson, Michael Schnall-Levin, Kevin Dean Ness, Serge Saxonov, Benjamin Hindson, John Stuelpnagel
  • Publication number: 20200385805
    Abstract: The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing. Such polynucleotide processing may be useful for a variety of applications, including polynucleotide sequencing.
    Type: Application
    Filed: August 20, 2020
    Publication date: December 10, 2020
    Inventors: Benjamin Hindson, Christopher Hindson, Michael Schnall-Levin, Kevin Ness, Mirna Jarosz, Serge Saxonov, Paul Hardenbol, Rajiv Bharadwaj, Xinying Zheng, Phillip Belgrader
  • Publication number: 20200377942
    Abstract: The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing. Such polynucleotide processing may be useful for a variety of applications, including polynucleotide sequencing.
    Type: Application
    Filed: August 20, 2020
    Publication date: December 3, 2020
    Inventors: Benjamin Hindson, Christopher Hindson, Michael Schnall-Levin, Kevin Ness, Mirna Jarosz, Serge Saxonov, Paul Hardenbol, Rajiv Bharadwaj, Xinying Zheng, Phillip Belgrader
  • Publication number: 20200378961
    Abstract: The present disclosure provides systems and methods for measuring one or more analytes at the single cell level. In some instances, sequencing of a composite barcode sequence may identify a type of analyte, identify a cell, and determine that the type of analyte originated from the cell. In some instances, a probability that a type of analyte originated from the cell may be determined. Multiple types of analytes may be identified to have originated from the cell, and/or the respective probabilities determined. An analyte may be a protein, such as a surface-bound protein or an internal protein. An analyte may be a metabolite or other small molecule. An analyte may be any constituent of a cell.
    Type: Application
    Filed: June 11, 2020
    Publication date: December 3, 2020
    Inventors: Michael Schnall-Levin, Ali R. Alemozafar
  • Patent number: 10854315
    Abstract: Systems and methods for determining structural variation and phasing using variant call data obtained from nucleic acid of a biological sample are provided. Sequence reads are obtained, each comprising a portion corresponding to a subset of the test nucleic acid and a portion encoding a barcode independent of the sequencing data. Bin information is obtained. Each bin represents a different portion of the sample nucleic acid. Each bin corresponds to a set of sequence reads in a plurality of sets of sequence reads formed from the sequence reads such that each sequence read in a respective set of sequence reads corresponds to a subset of the nucleic acid represented by the bin corresponding to the respective set. Binomial tests identify bin pairs having more sequence reads with the same barcode in common than expected by chance. Probabilistic models determine structural variation likelihood from the sequence reads of these bin pairs.
    Type: Grant
    Filed: February 9, 2016
    Date of Patent: December 1, 2020
    Assignee: 10X Genomics, Inc.
    Inventors: Sofia Kyriazopoulou-Panagiotopoulou, Patrick Marks, Michael Schnall-Levin, Xinying Zheng, Mirna Jarosz, Serge Saxonov, Kristina Giorda, Patrice Mudivarti, Heather Ordonez, Jessica Terry, William Haynes Heaton
  • Patent number: 10839939
    Abstract: Methods, processes, and particularly computer implemented processes and computer program products are provided for use in the analysis of genetic sequence data. The processes and products are employed in the assembly of shorter nucleic acid sequence data into longer linked and preferably contiguous genetic constructs, including large contigs, chromosomes and whole genomes.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: November 17, 2020
    Assignee: 10X Genomics, Inc.
    Inventors: Michael Schnall-Levin, Iain MacCallum
  • Publication number: 20200340034
    Abstract: The present disclosure provides methods and systems for nucleic acid preparation and analysis. Nucleic acid molecules may be derived from one or more cells. Preparation of nucleic acid molecules may comprise generation of one or more mutations, such as strand-specific mutations. Nucleic acid molecules may be prepared for and analyzed by sequencing. Sequences may be identified with nucleic acid orientation information.
    Type: Application
    Filed: May 12, 2020
    Publication date: October 29, 2020
    Inventors: Daniel P. Riordan, Preyas Shah, Michael Schnall-Levin
  • Publication number: 20200321078
    Abstract: A system for providing structural variation or phasing information is provided. The system accesses a nucleic acid sequence dataset corresponding to a target nucleic acid in a sample. The dataset comprises a header, synopsis, and data section. The data section comprises a plurality of sequencing reads. Each sequencing read comprises a first portion corresponding to a subset of the target nucleic acid and a second portion that encodes an identifier for the sequencing read from a plurality of identifiers. One or more programs in the memory of the system use a microprocessor of the system to provide a haplotype visualization tool that receives a request for structural variation or phasing information from the dataset. The request is evaluated against the synopsis thereby identifying portions of the data section. Structural variation or phasing information is formatted for display in the haplotype visualization tool using the identified portions of the data section.
    Type: Application
    Filed: April 21, 2020
    Publication date: October 8, 2020
    Inventors: Michael Schnall-Levin, Alexander Wong, David Luther Alan Stafford
  • Patent number: 10774370
    Abstract: The present invention is directed to methods, compositions and systems for analyzing sequence information while retaining structural and molecular context of that sequence information.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: September 15, 2020
    Assignee: 10X Genomics, Inc.
    Inventors: Xinying Zheng, Serge Saxonov, Michael Schnall-Levin, Kevin Ness, Rajiv Bharadwaj
  • Patent number: 10760124
    Abstract: The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing. Such polynucleotide processing may be useful for a variety of applications, including polynucleotide sequencing.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: September 1, 2020
    Assignee: 10X GENOMICS, INC.
    Inventors: Benjamin Hindson, Christopher Hindson, Michael Schnall-Levin, Kevin Ness, Mirna Jarosz, Serge Saxonov, Paul Hardenbol, Rajiv Bharadwaj, Xinying Zheng, Phillip Belgrader
  • Patent number: 10752949
    Abstract: The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing. Such polynucleotide processing may be useful for a variety of applications, including polynucleotide sequencing.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: August 25, 2020
    Assignee: 10X GENOMICS, INC.
    Inventors: Benjamin Hindson, Christopher Hindson, Michael Schnall-Levin, Kevin Ness, Mirna Jarosz, Serge Saxonov, Paul Hardenbol
  • Patent number: 10752950
    Abstract: The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing. Such polynucleotide processing may be useful for a variety of applications, including polynucleotide sequencing.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: August 25, 2020
    Assignee: 10X GENOMICS, INC.
    Inventors: Benjamin Hindson, Christopher Hindson, Michael Schnall-Levin, Kevin Ness, Mirna Jarosz, Serge Saxonov, Paul Hardenbol
  • Publication number: 20200255894
    Abstract: This disclosure provides methods and compositions for sample processing, particularly for sequencing applications. Included within this disclosure are bead compositions, such as diverse libraries of beads attached to large numbers of oligonucleotides containing barcodes. Often, the beads provides herein are degradable. For example, they may contain disulfide bonds that are susceptible to reducing agents. The methods provided herein include methods of making libraries of barcoded beads as well as methods of combining the beads with a sample, such as by using a microfluidic device.
    Type: Application
    Filed: January 7, 2020
    Publication date: August 13, 2020
    Inventors: Benjamin Hindson, Christopher Hindson, Michael Schnall-Levin, Kevin Ness, Mirna Jarosz, Serge Saxonov
  • Patent number: 10725027
    Abstract: The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing and analyte characterization from a single cell. Such polynucleotide processing may be useful for a variety of applications. The compositions, methods, systems, and devices disclosed herein generally describe barcoded oligonucleotides, which can be bound to a bead, such as a gel bead, useful for characterizing one or more analytes including, for example, protein (e.g., cell surface or intracellular proteins) and chromatin (e.g., accessible chromatin).
    Type: Grant
    Filed: April 4, 2019
    Date of Patent: July 28, 2020
    Assignee: 10X GENOMICS, INC.
    Inventors: Jason Bell, Geoffrey McDermott, Francesca Meschi, Michael Schnall-Levin, Xinying Zheng
  • Publication number: 20200232027
    Abstract: The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing. Such polynucleotide processing may be useful for a variety of applications, including polynucleotide sequencing. In some cases, this disclosure provides methods for the generation of polynucleotide barcode libraries, and for the attachment of such polynucleotides to target polynucleotides.
    Type: Application
    Filed: November 27, 2019
    Publication date: July 23, 2020
    Inventors: Benjamin Hindson, Mirna Jarosz, Paul Hardenbol, Michael Schnall-Levin, Kevin Ness, Serge Saxonov
  • Publication number: 20200199669
    Abstract: The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing. Such polynucleotide processing may be useful for a variety of applications, including polynucleotide sequencing.
    Type: Application
    Filed: September 13, 2019
    Publication date: June 25, 2020
    Inventors: Benjamin Hindson, Christopher Hindson, Michael Schnall-Levin, Kevin Ness, Mirna Jarosz, Serge Saxonov, Paul Hardenbol, Rajiv Bharadwaj, Xinying Zheng, Phillip Belgrader