Patents by Inventor Michael Shur

Michael Shur has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9948062
    Abstract: A solid-state light source (SSLS) with light modulation control is described. A SSLS device can include a main p-n junction region configured for recombination of electron-hole pairs for light emission. A supplementary p-n junction region is proximate the main p-n junction region to supplement the recombination of electron-hole pairs, wherein the supplementary p-n junction region has a smaller electron-hole life time than the electron-hole life time of the main p-n junction region. The main p-n junction region and the supplementary p-n junction region operate cooperatively in a light emission state and a light turn-off-state. In one embodiment, the recombination of electron-hole pairs occurs in the main p-n junction region during a light emission state, and the recombination of electron-hole pairs occurs in the supplementary p-n junction region light during the light turn off-state.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: April 17, 2018
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Grigory Simin, Michael Shur
  • Publication number: 20180093002
    Abstract: A solution for disinfecting an area using ultraviolet radiation is provided. The solution can include an enclosure including at least one ultraviolet transparent window and a set of ultraviolet radiation sources located adjacent to the at least one ultraviolet transparent window. The set of ultraviolet radiation sources can be configured to generate ultraviolet radiation directed through the at least one ultraviolet transparent window. An input unit can be located on the enclosure and configured to generate an electrical signal in response to pressure applied to the enclosure. A control unit can be configured to manage the ultraviolet radiation by monitoring the electrical signal generated by the input unit and controlling, based on the monitoring, the ultraviolet radiation generated by the set of ultraviolet radiation sources.
    Type: Application
    Filed: December 4, 2017
    Publication date: April 5, 2018
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Igor Agafonov, Alexander Dobrinsky, Michael Shur, Remigijus Gaska, Saulius Smetona
  • Publication number: 20180097157
    Abstract: A semiconductor heterostructure for an optoelectronic device includes a base semiconductor layer having one or more semiconductor heterostructure mesas located thereon. One or more of the mesas can include a set of active regions having multiple main peaks of radiative recombination at differing wavelengths. For example, a mesa can include two or more active regions, each of which has a different wavelength for the corresponding main peak of radiative recombination. The active regions can be configured to be operated simultaneously or can be capable of independent operation. A system can include one or more optoelectronic devices, each of which can be operated as an emitter or a detector.
    Type: Application
    Filed: September 29, 2017
    Publication date: April 5, 2018
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Grigory Simin, Michael Shur, Alexander Dobrinsky
  • Publication number: 20180092308
    Abstract: An approach for controlling ultraviolet intensity over a surface of a light sensitive object is described. Aspects involve using ultraviolet radiation with a wavelength range that includes ultraviolet-A and ultraviolet-B radiation to irradiate the surface. Light sensors measure light intensity at the surface, wherein each sensor measures light intensity in a wavelength range that corresponds to a wavelength range emitted from at least one of the sources. A controller controls the light intensity over the surface by adjusting the power of the sources as a function of the light intensity measurements. The controller uses the light intensity measurements to determine whether each source is illuminating the surface with an intensity that is within an acceptable variation with a predetermined intensity value targeted for the surface. The controller adjusts the power of the sources as a function of the variation to ensure an optimal distribution of light intensity over the surface.
    Type: Application
    Filed: September 21, 2017
    Publication date: April 5, 2018
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Arthur Peter Barber, III, Maxim S. Shatalov, Alexander Dobrinsky, Michael Shur
  • Patent number: 9919068
    Abstract: Ultraviolet radiation is directed within an area. Items located within the area and/or one or more conditions of the area are monitored over a period of time. Based on the monitoring, ultraviolet radiation sources are controlled by adjusting a direction, an intensity, a pattern, and/or a spectral power of the ultraviolet radiation generated by the ultraviolet radiation source. Adjustments to the ultraviolet radiation source(s) can correspond to one of a plurality of selectable operating configurations including a storage life preservation operating configuration, a disinfection operating configuration, and an ethylene decomposition operating configuration.
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: March 20, 2018
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Michael Shur, Maxim S. Shatalov, Timothy James Bettles, Yuri Bilenko, Saulius Smetona, Alexander Dobrinsky, Remigijus Gaska, Igor Agafonov
  • Patent number: 9923117
    Abstract: A semiconductor layer including a plurality of inhomogeneous regions is provided. Each inhomogeneous region has one or more attributes that differ from a material forming the semiconductor layer. The inhomogeneous regions can include one or more regions configured based on radiation having a target wavelength. These regions can include transparent and/or reflective regions. The inhomogeneous regions also can include one or more regions having a higher conductivity than a conductivity of the radiation-based regions, e.g., at least ten percent higher. In one embodiment, the semiconductor layer is used to form an optoelectronic device.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: March 20, 2018
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Maxim S. Shatalov, Alexander Dobrinsky, Alexander Lunev, Rakesh Jain, Jinwei Yang, Michael Shur, Remigijus Gaska
  • Patent number: 9923118
    Abstract: A semiconductor layer including a plurality of inhomogeneous regions is provided. Each inhomogeneous region has one or more attributes that differ from a material forming the semiconductor layer. The inhomogeneous regions can include one or more regions configured based on radiation having a target wavelength. These regions can include transparent and/or reflective regions. The inhomogeneous regions also can include one or more regions having a higher conductivity than a conductivity of the radiation-based regions, e.g., at least ten percent higher. In one embodiment, the semiconductor layer is used to form an optoelectronic device.
    Type: Grant
    Filed: August 1, 2016
    Date of Patent: March 20, 2018
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Maxim S. Shatalov, Alexander Dobrinsky, Rakesh Jain, Michael Shur
  • Publication number: 20180069151
    Abstract: A method of fabricating a light emitting diode, which includes an n-type contact layer and a light generating structure adjacent to the n-type contact layer, is provided. The light generating structure includes a set of quantum wells. The contact layer and light generating structure can be configured so that a difference between an energy of the n-type contact layer and an electron ground state energy of a quantum well is greater than an energy of a polar optical phonon in a material of the light generating structure. Additionally, the light generating structure can be configured so that its width is comparable to a mean free path for emission of a polar optical phonon by an electron injected into the light generating structure.
    Type: Application
    Filed: October 30, 2017
    Publication date: March 8, 2018
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Remigijus Gaska, Maxim S. Shatalov, Michael Shur, Alexander Dobrinsky
  • Publication number: 20180069154
    Abstract: An optoelectronic device with a multi-layer contact is described. The optoelectronic device can include an n-type semiconductor layer having a surface. A mesa can be located over a first portion of the surface of the n-type semiconductor layer and have a mesa boundary. An n-type contact region can be located over a second portion of the surface of the n-type semiconductor contact layer entirely distinct from the first portion, and be at least partially defined by the mesa boundary. A first n-type metallic contact layer can be located over at least a portion of the n-type contact region in proximity of the mesa boundary, where the first n-type metallic contact layer forms an ohmic contact with the n-type semiconductor layer. A second metallic contact layer can be located over a second portion of the n-type contact region, where the second metallic contact layer is formed of a reflective metallic material.
    Type: Application
    Filed: October 31, 2017
    Publication date: March 8, 2018
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Alexander Dobrinsky, Maxim S. Shatalov, Mikhail Gaevski, Michael Shur
  • Patent number: 9911895
    Abstract: A semiconductor layer including a plurality of inhomogeneous regions is provided. Each inhomogeneous region has one or more attributes that differ from a material forming the semiconductor layer. The inhomogeneous regions can include one or more regions configured based on radiation having a target wavelength. These regions can include transparent and/or reflective regions. The inhomogeneous regions also can include one or more regions having a higher conductivity than a conductivity of the radiation-based regions, e.g., at least ten percent higher.
    Type: Grant
    Filed: March 14, 2016
    Date of Patent: March 6, 2018
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Maxim S. Shatalov, Alexander Dobrinsky, Alexander Lunev, Rakesh Jain, Jinwei Yang, Michael Shur, Remigijus Gaska
  • Patent number: 9911900
    Abstract: A profiled surface for improving the propagation of radiation through an interface is provided. The profiled surface includes a set of large roughness components providing a first variation of the profiled surface having a characteristic scale approximately an order of magnitude larger than a target wavelength of the radiation. The set of large roughness components can include a series of truncated shapes. The profiled surface also includes a set of small roughness components superimposed on the set of large roughness components and providing a second variation of the profiled surface having a characteristic scale on the order of the target wavelength of the radiation.
    Type: Grant
    Filed: May 9, 2016
    Date of Patent: March 6, 2018
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Maxim S. Shatalov, Alexander Dobrinsky, Michael Shur, Remigijus Gaska
  • Patent number: 9907869
    Abstract: A solution for disinfecting a screen of an item using ultraviolet radiation is provided. The solution can provide an electronic device including a screen utilized by a user of the electronic device. The screen can be an ultraviolet transparent screen that covers at least some of the internal portion of the electronic device and a set of ultraviolet radiation sources can be located adjacent to the transparent screen. The set of ultraviolet radiation sources can be configured to generate ultraviolet radiation directed towards an external surface of the ultraviolet transparent screen. The electronic device can further include a monitoring and control system, which can manage the ultraviolet radiation generation by monitoring a set of attributes relating to the external surface of the screen and controlling, based on the monitoring, ultraviolet radiation directed at the external surface of the screen.
    Type: Grant
    Filed: February 4, 2016
    Date of Patent: March 6, 2018
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Yuri Bilenko, Alexander Dobrinsky, Michael Shur
  • Publication number: 20180054975
    Abstract: An approach for controlling light exposure of a light sensitive object is described. Aspects of this approach involve using a first set of radiation sources to irradiate the object with visible radiation and infrared radiation. A second set of radiation sources spot irradiate the object in a set of locations with a target ultraviolet radiation having a range of wavelengths. Radiation sensors detect radiation reflected from the object and environment condition sensors detect conditions of the environment in which the object is located during irradiation. A controller controls irradiation of the light sensitive object by the first and second set of radiation sources according to predetermined optimal irradiation settings specified for various environmental conditions. In addition, the controller adjusts irradiation settings of the first and second set of radiation sources as a function of measurements obtained by the various sensors.
    Type: Application
    Filed: August 16, 2017
    Publication date: March 1, 2018
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Michael Shur, Alexander Dobrinsky, Maxim S. Shatalov, Peter Barber
  • Publication number: 20180062040
    Abstract: An opto-electronic device with two-dimensional injection layers is described. The device can include a semiconductor structure with a semiconductor layer having one of an n-type semiconductor layer or a p-type semiconductor layer, and a light generating structure formed on the semiconductor layer. A set of tilted semiconductor heterostructures is formed over the semiconductor structure. Each tilted semiconductor heterostructure includes a core region, a set of shell regions adjoining a sidewall of the core region, and a pair of two-dimensional carrier accumulation (2DCA) layers. Each 2DCA layer is formed at a heterointerface between one of the sidewalls of the core region and one of the shell regions. The sidewalls of the core region, the shell regions, and the 2DCA layers each having a sloping surface, wherein each 2DCA layer forms an angle with a surface of the semiconductor structure.
    Type: Application
    Filed: August 16, 2017
    Publication date: March 1, 2018
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Grigory Simin, Michael Shur, Alexander Dobrinsky
  • Publication number: 20180053879
    Abstract: A contact to a semiconductor layer in a light emitting structure is provided. The contact can include a plurality of contact areas formed of a metal and separated by a set of voids. The contact areas can be separated from one another by a characteristic distance selected based on a set of attributes of a semiconductor contact structure of the contact and a characteristic contact length scale of the contact. The voids can be configured to increase an overall reflectivity or transparency of the contact.
    Type: Application
    Filed: October 16, 2017
    Publication date: February 22, 2018
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Alexander Lunev, Maxim S. Shatalov, Alexander Dobrinsky, Michael Shur, Remigijus Gaska
  • Publication number: 20180047870
    Abstract: A device having a layer with a patterned surface for improving the growth of semiconductor layers, such as group III nitride-based semiconductor layers with a high concentration of aluminum, is provided. The patterned surface can include a substantially flat top surface and a plurality of stress reducing regions, such as openings. The substantially flat top surface can have a root mean square roughness less than approximately 0.5 nanometers, and the stress reducing regions can have a characteristic size between approximately 0.1 microns and approximately five microns and a depth of at least 0.2 microns. A layer of group-III nitride material can be grown on the first layer and have a thickness at least twice the characteristic size of the stress reducing regions.
    Type: Application
    Filed: October 30, 2017
    Publication date: February 15, 2018
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Rakesh Jain, Wenhong Sun, Jinwei Yang, Maxim S. Shatalov, Alexander Dobrinsky, Michael Shur, Remigijus Gaska
  • Patent number: 9894723
    Abstract: A solid-state light source (SSLS) structure with integrated control. In one embodiment, a SSLS control circuit can be integrated with a SSLS structure formed from a multiple of SSLSs. The SSLS control circuit controls the total operating current of the SSLS structure to within a predetermined total operating current limit by selectively limiting the current in individual SSLSs or in groups of SSLSs as each are turned on according to a sequential order. The SSLS control circuit limits the current in each of the individual SSLSs or groups of SSLSs as function of the saturation current of the SSLSs. In one embodiment, the individual SSLSs or groups of SSLSs has a turn on voltage corresponding to a voltage causing a preceding SSLS or group of SSLSs in the sequential order to saturate current.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: February 13, 2018
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Grigory Simin, Michael Shur, Alexander Dobrinsky, Maxim S. Shatalov
  • Patent number: 9894728
    Abstract: Flash light-generating methods and systems are provided, which, in one aspect, include: obtaining one or more measurements of existing light on or around an illumination target; ascertaining a desired color attribute(s) for a combined light to be provided on the illumination target, the combined light including the existing light and a flash light to be generated; determining a flash light spectral power distribution of illumination which achieves a combined light spectral power distribution of illumination on the illumination target having the desired color attribute(s), the determining using, in part, the measurement(s) of existing light, and the desired color attribute(s) for the combined light; and generating the flash light with the determined flash light spectral power distribution of illumination to provide the combined light on the illumination target having the combined light spectral power distribution of illumination with the desired color attribute(s).
    Type: Grant
    Filed: November 25, 2014
    Date of Patent: February 13, 2018
    Assignee: RENSSELAER POLYTECHNIC INSTITUTE
    Inventors: Michael Shur, Anqing Liu
  • Publication number: 20180036444
    Abstract: A solution for disinfecting flowable products, such as liquids, suspensions, creams, colloids, emulsions, powders, and/or the like, as well as accessories and products relating thereto, such as containers, caps, brushes, applicators, and/or the like, using ultraviolet radiation is provided. In an embodiment, an ultraviolet impermeable cap is configured to enclose a volume corresponding to a flowable product. At least one ultraviolet radiation source can be mounted on the cap and be configured to generate ultraviolet radiation for disinfecting the enclosed area. The ultraviolet radiation source can be configured to only generate ultraviolet radiation when the volume is enclosed by the ultraviolet impermeable cap.
    Type: Application
    Filed: October 17, 2017
    Publication date: February 8, 2018
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Timothy James Bettles, Alexander Dobrinsky, Michael Shur, Remigijus Gaska
  • Patent number: 9887267
    Abstract: A normally-off transistor with a high operating voltage is provided. The transistor can include a barrier above the channel and an additional barrier layer located below the channel. A source electrode and a drain electrode are connected to the channel and a gate electrode is connected to the additional barrier layer located below the channel. The bandgap for each of the barrier layers can be larger than the bandgap for the channel. A polarization charge induced at the interface between the additional barrier layer below the channel and the channel depletes the channel. A voltage can be applied to the bottom barrier to induce free carriers into the channel and turn the channel on.
    Type: Grant
    Filed: August 11, 2016
    Date of Patent: February 6, 2018
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Grigory Simin, Michael Shur