Patents by Inventor Michael Shur

Michael Shur has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180374986
    Abstract: Fabrication of a heterostructure, such as a group III nitride heterostructure, for use in an optoelectronic device is described. The heterostructure can be epitaxially grown on a sacrificial layer, which is located on a substrate structure. The sacrificial layer can be at least partially decomposed using a laser. The substrate structure can be completely removed from the heterostructure or remain attached thereto. One or more additional solutions for detaching the substrate structure from the heterostructure can be utilized. The heterostructure can undergo additional processing to form the optoelectronic device.
    Type: Application
    Filed: August 13, 2018
    Publication date: December 27, 2018
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Michael Shur, Alexander Dobrinsky, Maxim S. Shatalov
  • Patent number: 10164147
    Abstract: A light emitting heterostructure including one or more fine structure regions is provided. The light emitting heterostructure can include a plurality of barriers alternating with a plurality of quantum wells. One or more of the barriers and/or quantum wells includes a fine structure region. The fine structure region includes a plurality of subscale features arranged in at least one of: a growth or a lateral direction.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: December 25, 2018
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Wenhong Sun, Alexander Dobrinsky, Maxim S. Shatalov, Jinwei Yang, Michael Shur, Remigijus Gaska
  • Patent number: 10158044
    Abstract: A solution for fabricating a semiconductor structure is provided. The semiconductor structure includes a plurality of semiconductor layers grown over a substrate using a set of epitaxial growth periods. During each epitaxial growth period, a first semiconductor layer having one of: a tensile stress or a compressive stress is grown followed by growth of a second semiconductor layer having the other of: the tensile stress or the compressive stress directly on the first semiconductor layer.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: December 18, 2018
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Rakesh Jain, Wenhong Sun, Jinwei Yang, Maxim S. Shatalov, Alexander Dobrinsky, Remigijus Gaska, Michael Shur
  • Patent number: 10153396
    Abstract: A device having a layer with a patterned surface for improving the growth of semiconductor layers, such as group III nitride-based semiconductor layers with a high concentration of aluminum, is provided. The patterned surface can include a substantially flat top surface and a plurality of stress reducing regions, such as openings. The substantially flat top surface can have a root mean square roughness less than approximately 0.5 nanometers, and the stress reducing regions can have a characteristic size between approximately 0.1 microns and approximately five microns and a depth of at least 0.2 microns. A layer of group-III nitride material can be grown on the first layer and have a thickness at least twice the characteristic size of the stress reducing regions.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: December 11, 2018
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Rakesh Jain, Wenhong Sun, Jinwei Yang, Maxim S. Shatalov, Alexander Dobrinsky, Michael Shur, Remigijus Gaska
  • Patent number: 10151685
    Abstract: A solution for evaluating a sample gas for a presence of a trace gas, such as ozone, is provided. The solution uses an ultraviolet source and an ultraviolet detector mounted in a chamber. The chamber can include reflecting walls and/or structures configured to guide ultraviolet light. A computer system can operate the ultraviolet source in a high power pulse mode and acquire data corresponding to an intensity of the ultraviolet radiation detected by the ultraviolet detector while a sample gas is present in the chamber. Using the data, the computer system can determine a presence and/or an amount of the trace gas in the sample gas.
    Type: Grant
    Filed: April 17, 2017
    Date of Patent: December 11, 2018
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Yuri Bilenko, Alexander Dobrinsky, Michael Shur, Remigijus Gaska
  • Publication number: 20180346349
    Abstract: A solution for treating a fluid, such as water, is provided. An ultraviolet transparency of a fluid can be determined before or as the fluid enters a disinfection chamber. In the disinfection chamber, the fluid can be irradiated by ultraviolet radiation to harm microorganisms that may be present in the fluid. One or more attributes of the disinfection chamber, fluid flow, and/or ultraviolet radiation can be adjusted based on the transparency to provide more efficient irradiation and/or higher disinfection rates. In addition, various attributes of the disinfection chamber, such as the position of the inlet(s) and outlet(s), the shape of the disinfection chamber, and other attributes of the disinfection chamber can be utilized to create a turbulent flow of the fluid within the disinfection chamber to promote mixing and improve uniform ultraviolet exposure.
    Type: Application
    Filed: August 2, 2018
    Publication date: December 6, 2018
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Saulius Smetona, Timothy James Bettles, Igor Agafonov, Ignas Gaska, Alexander Dobrinsky, Michael Shur, Remigijus Gaska
  • Patent number: 10147848
    Abstract: An optoelectronic device with a multi-layer contact is described. The optoelectronic device can include a n-type semiconductor layer having a surface. A mesa can be located over a first portion of the surface of the n-type semiconductor layer and have a mesa boundary. A n-type contact region can be located over a second portion of the surface of the n-type semiconductor contact layer entirely distinct from the first portion, and be at least partially defined by the mesa boundary. A first n-type metallic contact layer can be located over at least a portion of the n-type contact region in proximity of the mesa boundary, where the first n-type metallic contact layer forms an ohmic contact with the n-type semiconductor layer. A second n-type metallic contact layer can be located over a second portion of the n-type contact region, where the second n-type metallic contact layer is formed of a reflective metallic material.
    Type: Grant
    Filed: October 3, 2016
    Date of Patent: December 4, 2018
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Mikhail Gaevski, Maxim S. Shatalov, Alexander Dobrinsky, Michael Shur
  • Patent number: 10147854
    Abstract: A solution for packaging an optoelectronic device using an ultraviolet transparent polymer is provided. The ultraviolet transparent polymer material can be placed adjacent to the optoelectronic device and/or a device package on which the optoelectronic device is mounted. Subsequently, the ultraviolet transparent polymer material can be processed to cause the ultraviolet transparent polymer material to adhere to the optoelectronic device and/or the device package. The ultraviolet transparent polymer can be adhered in a manner that protects the optoelectronic device from the ambient environment.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: December 4, 2018
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Maxim S. Shatalov, Saulius Smetona, Alexander Dobrinsky, Michael Shur, Mikhail Gaevski
  • Publication number: 20180342649
    Abstract: A solution for fabricating a device is described. The solution can include fabricating a heterostructure for the device, which includes at least one stress controlling layer. The stress controlling layer can include one or more attributes varies as a function of a lateral position based on a target variation of stresses in a semiconductor layer located directly under the stress controlling layer. Embodiments are further directed to a heterostructure including at least one stress controlling layer and a device including the heterostructure.
    Type: Application
    Filed: July 16, 2018
    Publication date: November 29, 2018
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Michael Shur, Alexander Dobrinsky
  • Patent number: 10134948
    Abstract: An improved light emitting heterostructure is provided. The heterostructure includes an active region having a set of barrier layers and a set of quantum wells, each of which is adjoined by a barrier layer. The quantum wells have a delta doped p-type sub-layer located therein, which results in a change of the band structure of the quantum well. The change can reduce the effects of polarization in the quantum wells, which can provide improved light emission from the active region.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: November 20, 2018
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Michael Shur, Remigijus Gaska
  • Publication number: 20180329138
    Abstract: A solution for fabricating a structure including a light guiding structure is provided. The light guiding structure can be formed of a fluoropolymer-based material and include one or more regions, each of which is filled with a fluid transparent to radiation having a target wavelength, such as ultraviolet radiation. The region(s) can be created using a filler material, which is at least substantially enclosed by the fluoropolymer-based material and subsequently removed from each region. The structure can further include at least one optical element integrated into the light guiding structure.
    Type: Application
    Filed: July 16, 2018
    Publication date: November 15, 2018
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Alexander Dobrinsky, Michael Shur, Remigijus Gaska
  • Patent number: 10124081
    Abstract: A solution for disinfecting an area using ultraviolet radiation is provided. The solution can include an enclosure including at least one ultraviolet transparent window and a set of ultraviolet radiation sources located adjacent to the at least one ultraviolet transparent window. The set of ultraviolet radiation sources can be configured to generate ultraviolet radiation directed through the at least one ultraviolet transparent window. An input unit can be located on the enclosure and configured to generate an electrical signal in response to pressure applied to the enclosure. A control unit can be configured to manage the ultraviolet radiation by monitoring the electrical signal generated by the input unit and controlling, based on the monitoring, the ultraviolet radiation generated by the set of ultraviolet radiation sources.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: November 13, 2018
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Igor Agafonov, Alexander Dobrinsky, Michael Shur, Remigijus Gaska, Saulius Smetona
  • Publication number: 20180323071
    Abstract: A semiconductor structure, such as a group III nitride-based semiconductor structure is provided. The semiconductor structure includes a cavity containing semiconductor layer. The cavity containing semiconductor layer can have a thickness greater than two monolayers and a multiple cavities. The cavities can have a characteristic size of at least one nanometer and a characteristic separation of at least five nanometers.
    Type: Application
    Filed: June 29, 2018
    Publication date: November 8, 2018
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Maxim S. Shatalov, Jinwei Yang, Wenhong Sun, Rakesh Jain, Michael Shur, Remigijus Gaska
  • Publication number: 20180323345
    Abstract: An optoelectronic device with a multi-layer contact is described. The optoelectronic device can include an n-type semiconductor layer having a surface. A mesa can be located over a first portion of the surface of the n-type semiconductor layer and have a mesa boundary, which has a shape including a plurality of interconnected fingers. The n-type semiconductor layer can have a shape at least partially defined by the mesa boundary. A first n-type contact layer can be located adjacent to another portion of the n-type semiconductor contact layer, where the first n-type contact layer forms an ohmic contact with the n-type semiconductor layer. A second contact layer can be located over a second portion of the n-type semiconductor contact layer, where the second contact layer is formed of a reflective material.
    Type: Application
    Filed: July 2, 2018
    Publication date: November 8, 2018
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Alexander Dobrinsky, Maxim S. Shatalov, Mikhail Gaevski, Michael Shur
  • Publication number: 20180315886
    Abstract: A heterostructure, such as a group III nitride heterostructure, for use in an optoelectronic device is described. The heterostructure can include a sacrificial layer, which is located on a substrate structure. The sacrificial layer can be at least partially decomposed using a laser. The substrate structure can be completely removed from the heterostructure or remain attached thereto. One or more additional solutions for detaching the substrate structure from the heterostructure can be utilized. The heterostructure can undergo additional processing to form the optoelectronic device.
    Type: Application
    Filed: June 20, 2018
    Publication date: November 1, 2018
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Mikhail Gaevski, Alexander Dobrinsky, Maxim S. Shatalov, Michael Shur
  • Patent number: 10115659
    Abstract: A solution for packaging a two terminal device, such as a light emitting diode, is provided. In one embodiment, a method of packaging a two terminal device includes: patterning a metal sheet to include a plurality of openings; bonding at least one two terminal device to the metal sheet, wherein a first opening corresponds to a distance between a first contact and a second contact of the at least one two terminal device; and cutting the metal sheet around each of the least one two terminal device, wherein the metal sheet forms a first electrode to the first contact and a second electrode to the second contact.
    Type: Grant
    Filed: April 17, 2017
    Date of Patent: October 30, 2018
    Assignee: Sensor Electronics Technology, Inc.
    Inventors: Yuri Bilenko, Michael Shur, Remigijus Gaska, Alexander Dobrinsky
  • Publication number: 20180303134
    Abstract: A solution for irradiating a surface with ultraviolet radiation is provided. A movable optical element is utilized to form a beam of ultraviolet radiation having a characteristic cross-sectional area smaller than an area of the surface to be irradiated. The movable optical element can be moved as necessary to directly irradiate any portion of the surface with radiation within the characteristic cross-sectional area of the beam of ultraviolet radiation. The movement can include, for example, rotational movement and/or repositioning the movable ultraviolet source with respect to the surface.
    Type: Application
    Filed: July 2, 2018
    Publication date: October 25, 2018
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Alexander Dobrinsky, Michael Shur, Remigijus Gaska
  • Patent number: 10107944
    Abstract: A diffusive layer including a laminate of a plurality of transparent films is provided. At least one of the plurality of transparent films includes a plurality of diffusive elements with a concentration that is less than a percolation threshold. The plurality of diffusive elements are optical elements that diffuse light that is impinging on such element. The plurality of diffusive elements can be diffusively reflective, diffusively transmitting or combination of both. The plurality of diffusive elements can include fibers, grains, domains, and/or the like. The at least one film can also include a powder material for improving the diffusive emission of radiation and a plurality of particles that are fluorescent when exposed to radiation.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: October 23, 2018
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Alexander Dobrinsky, Michael Shur
  • Publication number: 20180296712
    Abstract: A system for providing ultraviolet treatment to light absorbing liquids, such as biological liquids in a medical instrument, is disclosed. The system can include an ultraviolet impenetrable housing configured to enclose a portion of the medical instrument containing the biological fluid. At least one ultraviolet radiation source is integrated within the housing that emits ultraviolet radiation towards the medical instrument and the biological fluid. A control unit is configured to direct the ultraviolet radiation source to treat the biological fluid with ultraviolet radiation.
    Type: Application
    Filed: June 20, 2018
    Publication date: October 18, 2018
    Applicant: Sensor Electronic Technology, Inc.
    Inventors: Alexander Dobrinsky, Timothy James Bettles, Michael Shur
  • Patent number: 10099944
    Abstract: A solution for disinfecting a fluid, colloid, mixture, and/or the like using ultraviolet radiation is provided. An ultraviolet transparent enclosure can include an inlet and an outlet for a flow of media to be disinfected. The ultraviolet transparent enclosure includes a material that is configured to prevent biofouling within the ultraviolet transparent enclosure. A set of ultraviolet radiation sources are located adjacent to the ultraviolet transparent enclosure and are configured to generate ultraviolet radiation towards the ultraviolet transparent enclosure.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: October 16, 2018
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Saulius Smetona, Timothy James Bettles, Alexander Dobrinsky, Michael Shur, Remigijus Gaska