Patents by Inventor Michael T. Andreas

Michael T. Andreas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6972227
    Abstract: Semiconductor processing methods are described which can be used to reduce the chances of an inadvertent contamination during processing. In one implementation, a semiconductor wafer backside is mechanically scrubbed to remove an undesired material prior to forming a final passivation layer over an oppositely facing semiconductor wafer frontside. In another implementation, the wafer backside is treated to remove the undesired material while treatment of the wafer frontside is restricted. In another implementation, the mechanical scrubbing of the wafer backside is conducted in connection with a polishing solution which is effective to facilitate removal of undesired material from the wafer backside. In a preferred implementation, dynamic random access memory storage capacitors are formed and the undesired material constitutes remnant polysilicon which adheres to the wafer backside during formation of a frontside capacitor storage node.
    Type: Grant
    Filed: August 13, 2002
    Date of Patent: December 6, 2005
    Assignee: Micron Technology, Inc.
    Inventor: Michael T. Andreas
  • Patent number: 6936540
    Abstract: A post-CMP cleaning process includes brush cleaning a CMPed surface, followed by at least partially drying the CMPed surface, followed by spray cleaning the CMPed surface. A method of cleaning residue from registration alignment markings formed on a semiconductor substrate includes polishing a material within which the registration alignment markings are received with a polishing solution comprising a liquid and a solid, followed by brush cleaning a remaining outermost polished surface, followed by at least partially drying the polished surface, followed by spray cleaning the outermost polished surface. Other aspects and implementations are contemplated.
    Type: Grant
    Filed: September 18, 2003
    Date of Patent: August 30, 2005
    Assignee: Micron Technology, Inc.
    Inventor: Michael T. Andreas
  • Patent number: 6936534
    Abstract: A method for the post-etch cleaning of multi-level, damascene structures which minimizes, or substantially prevents, localized corrosion of underlying copper metallization comprises subjecting an intermediate structure in the fabrication of a multi-level, damascene structure, which structure includes an underlying copper metallization layer and an opening etched therein which exposes at least a portion of the underlying copper metallization layer, to an aqueous or acidic wash solution, in an environment substantially shielded from ambient light, to substantially remove any post-etch residues which may be present on the structure. In one embodiment, the aqueous or acidic wash solution has a nonzero static etch rate when applied to both the copper and conventional dielectric materials, e.g., silicon dioxide.
    Type: Grant
    Filed: September 17, 2003
    Date of Patent: August 30, 2005
    Assignee: Micron Technology, Inc.
    Inventor: Michael T. Andreas
  • Patent number: 6930017
    Abstract: A method of removing organic particles from a registration mark on a semiconductor wafer. The method comprises providing a semiconductor wafer comprising at least one registration mark at least partially filled with organic particles. The at least one registration mark has a trench width from approximately 1.0 ?m to approximately 3.0 ?m. The semiconductor wafer is exposed to a cleaning solution comprising tetramethylammonium hydroxide and at least one surfactant, such as an acetylenic diol surfactant. The semiconductor wafer is exposed to an ultrasonic or megasonic vibrational energy. A semiconductor wafer previously subjected to a chemical mechanical planarization treatment and having a reduced amount of organic particles in a registration mark is also disclosed.
    Type: Grant
    Filed: August 21, 2003
    Date of Patent: August 16, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Michael T. Andreas, Paul A. Morgan
  • Patent number: 6908569
    Abstract: A method of removing ruthenium silicide from a substrate surface which comprises exposing the ruthenium silicide surface to a solution containing chlorine and fluorine containing chemicals. In particular, said solution is designed to react with said ruthenium silicide film such that water-soluble reaction products are formed.
    Type: Grant
    Filed: April 23, 2003
    Date of Patent: June 21, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Brenda D. Kraus, Michael T. Andreas
  • Patent number: 6835121
    Abstract: A chemical-mechanical polishing (CMP) method includes applying a solid abrasive material to a substrate, polishing the substrate, flocculating at least a portion of the abrasive material, and removing at least a majority portion of the flocculated portion from the substrate. Applying solid abrasive material can include applying a CMP slurry or a polishing pad comprising abrasive material. Such a method can further include applying a surfactant comprising material to the substrate to assist in effectuating flocculation of the abrasive material. Such surfactant comprising material may be cationic which includes, for example, a quaternary ammonium substituted salt. Also, for example, the surfactant comprising material may be applied during polishing, brush scrubbing, pressure spraying, or buffing.
    Type: Grant
    Filed: November 20, 2001
    Date of Patent: December 28, 2004
    Assignee: Micron Technology, Inc.
    Inventor: Michael T. Andreas
  • Patent number: 6835668
    Abstract: The invention includes a method of cleaning a surface of a copper-containing material by exposing the surface to an acidic mixture comprising NO3−, F− and one or more organic acid anions having carboxylate groups. The invention also includes a semiconductor processing method of forming an opening to a copper-containing material. A mass is formed over a copper-containing material within an opening in a substrate. The mass contains at least one of an oxide barrier material and a dielectric material. A second opening is etched through the mass into the copper-containing material to form a base surface of the copper-containing material that is at least partially covered by particles comprising at least one of a copper oxide, a silicon oxide or a copper fluoride. The base surface is cleaned with a solution comprising nitric acid, hydrofluoric acid and one or more organic acids to remove at least some of the particles.
    Type: Grant
    Filed: September 25, 2002
    Date of Patent: December 28, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Michael T. Andreas, Paul A. Morgan
  • Patent number: 6787473
    Abstract: Methods for removing residuals from the surface of an integrated circuit device. Such methods find particular application in the fabrication of a dual damascene structure following removal of excess portions of a silver-containing metal layer from a device surface. The methods facilitate removal of particulate residuals as well as unremoved portions of the metal layer in a single cleaning process. The cleaning solutions for use with the methods are dilute aqueous solutions containing hydrogen peroxide and at least one acidic component and are substantially free of particulate material. Acidic components include carboxylic acids and their salts.
    Type: Grant
    Filed: January 31, 2003
    Date of Patent: September 7, 2004
    Assignee: Micron Technology, Inc.
    Inventor: Michael T. Andreas
  • Patent number: 6740252
    Abstract: A method of removing ruthenium silicide from a substrate surface which comprises exposing the ruthenium silicide surface to a solution containing chlorine and fluorine containing chemicals. In particular, said solution is designed to react with said ruthenium silicide film such that water-soluble reaction products are formed.
    Type: Grant
    Filed: June 7, 2002
    Date of Patent: May 25, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Brenda D. Kraus, Michael T. Andreas
  • Publication number: 20030224958
    Abstract: Methods and solutions for cleaning a polished aluminum-containing layer, and the structures formed by these methods. The method for cleaning the polished aluminum-containing layer is practiced by contacting a polished aluminum-containing layer with a solution comprising water and a corrosion-inhibiting agent. In these methods and solutions, the water may be deionized water, the corrosion-inhibiting agent may be citric acid or one of its salts, and the solution may contain additional additives, such as chelating agents, buffers, oxidants, antioxidants, and surfactants. These methods and solutions reduce the corrosion caused by DI water used in cleaning polished aluminum-containing layers and maintain a passivative environment which protects the exposed aluminum structures.
    Type: Application
    Filed: May 29, 2002
    Publication date: December 4, 2003
    Inventor: Michael T. Andreas
  • Publication number: 20030205689
    Abstract: A method of removing ruthenium silicide from a substrate surface which comprises exposing the ruthenium silicide surface to a solution containing chlorine and fluorine containing chemicals. In particular, said solution is designed to react with said ruthenium silicide film such that water-soluble reaction products are formed.
    Type: Application
    Filed: April 23, 2003
    Publication date: November 6, 2003
    Inventors: Brenda D. Kraus, Michael T. Andreas
  • Patent number: 6635562
    Abstract: Methods for making an aluminum-containing metallization structure, methods and solutions for cleaning a polished aluminum-containing layer, and the structures formed by these methods. The methods for making the aluminum-containing metallization structure are practiced by providing a substrate, forming a metal layer with an upper surface containing aluminum over the substrate, polishing the metal layer, and contacting the polished surface of the metal layer with a solution comprising water and at least one corrosion-inhibiting agent. The method for cleaning the polished aluminum-containing layer is practiced by contacting a polished aluminum-containing layer with a solution comprising water and a corrosion-inhibiting agent. In these methods and solutions, the water may be deionized water, the corrosion-inhibiting agent may be citric acid or one of its salts, and the solution may contain additional additives, such as chelating agents, buffers, oxidants, anti-oxidants, and surfactants.
    Type: Grant
    Filed: April 25, 2001
    Date of Patent: October 21, 2003
    Assignee: Micron Technology, Inc.
    Inventor: Michael T. Andreas
  • Patent number: 6627550
    Abstract: Cleaning solutions and methods for removing residuals from the surface of an integrated circuit device. Such solutions and methods find particular application in the fabrication of a dual damascene structure following removal of excess portions of a silver-containing metal layer from a device surface. The cleaning solutions and methods facilitate removal of particulate residuals as well as unremoved portions of the metal layer in a single cleaning process. The cleaning solutions are dilute aqueous solutions containing hydrogen peroxide and at least one acidic component and are substantially free of particulate material. Acidic components include carboxylic acids and their salts.
    Type: Grant
    Filed: March 27, 2001
    Date of Patent: September 30, 2003
    Assignee: Micron Technology, Inc.
    Inventor: Michael T. Andreas
  • Patent number: 6613674
    Abstract: Semiconductor processing methods are described which can be used to reduce the chances of an inadvertent contamination during processing. In one implementation, a semiconductor wafer backside is mechanically scrubbed to remove an undesired material prior to forming a final passivation layer over an oppositely facing semiconductor wafer frontside. In another implementation, the wafer backside is treated to remove the undesired material while treatment of the wafer frontside is restricted. In another implementation, the mechanical scrubbing of the wafer backside is conducted in connection with a polishing solution which is effective to facilitate removal of undesired material from the wafer backside. In a preferred implementation, dynamic random access memory storage capacitors are formed and the undesired material constitutes remnant polysilicon which adheres to the wafer backside during formation of a frontside capacitor storage node.
    Type: Grant
    Filed: May 30, 2000
    Date of Patent: September 2, 2003
    Assignee: Micron Technology, Inc.
    Inventor: Michael T. Andreas
  • Publication number: 20030143857
    Abstract: Cleaning solutions for removing residuals from the surface of an integrated circuit device. Such cleaning solutions find particular application in the fabrication of a dual damascene structure following removal of excess portions of a silver-containing metal layer from a device surface. The cleaning solutions facilitate removal of particulate residuals as well as unremoved portions of the metal layer in a single cleaning process. The cleaning solutions are dilute aqueous solutions containing hydrogen peroxide and at least one acidic component and are substantially free of particulate material. Acidic components include carboxylic acids and their salts.
    Type: Application
    Filed: January 31, 2003
    Publication date: July 31, 2003
    Applicant: Micron Technology, Inc.
    Inventor: Michael T. Andreas
  • Publication number: 20030139059
    Abstract: Methods for removing residuals from the surface of an integrated circuit device. Such methods find particular application in the fabrication of a dual damascene structure following removal of excess portions of a silver-containing metal layer from a device surface. The methods facilitate removal of particulate residuals as well as unremoved portions of the metal layer in a single cleaning process. The cleaning solutions for use with the methods are dilute aqueous solutions containing hydrogen peroxide and at least one acidic component and are substantially free of particulate material. Acidic components include carboxylic acids and their salts.
    Type: Application
    Filed: January 31, 2003
    Publication date: July 24, 2003
    Applicant: Micron Technology, Inc.
    Inventor: Michael T. Andreas
  • Patent number: 6589882
    Abstract: The invention includes a method of cleaning a surface of a copper-containing material by exposing the surface to an acidic mixture comprising NO3−, F− and one or more organic acid anions having carboxylate groups. The invention also includes a semiconductor processing method of forming an opening to a copper-containing material. A mass is formed over a copper-containing material within an opening in a substrate. The mass contains at least one of an oxide barrier material and a dielectric material. A second opening is etched through the mass into the copper-containing material to form a base surface of the copper-containing material that is at least partially covered by particles comprising at least one of a copper oxide, a silicon oxide or a copper fluoride. The base surface is cleaned with a solution comprising nitric acid, hydrofluoric acid and one or more organic acids to remove at least some of the particles.
    Type: Grant
    Filed: October 24, 2001
    Date of Patent: July 8, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Michael T. Andreas, Paul A. Morgan
  • Publication number: 20030089891
    Abstract: An antimicrobial cleaning composition and methods for cleaning semiconductor substrates, particularly after chemical mechanical planarization or polishing, are provided. In one embodiment, the cleaning composition combines a solvent, a cleaning agent such as a hydroxycarboxylic acid or salt thereof, and at least one antimicrobial agent resulting in a cleaning composition in which microbial growth is inhibited. Examples of suitable antimicrobial agents include a benzoic acid or salt such as potassium or ammonium benzoate, and sorbic acid or salt such as potassium sorbate. The composition is useful for cleaning a wafer and particularly for removing residual particles after a conductive layer has been planarized to a dielectric layer under the conductive layer in a chemical mechanical planarization of a semiconductor wafer with abrasive slurry particles, particularly after a CMP of copper or aluminum films.
    Type: Application
    Filed: October 16, 2001
    Publication date: May 15, 2003
    Inventor: Michael T. Andreas
  • Publication number: 20030077902
    Abstract: The invention includes a method of cleaning a surface of a copper-containing material by exposing the surface to an acidic mixture comprising NO3−, F− and one or more organic acid anions having carboxylate groups. The invention also includes a semiconductor processing method of forming an opening to a copper-containing material. A mass is formed over a copper-containing material within an opening in a substrate. The mass contains at least one of an oxide barrier material and a dielectric material. A second opening is etched through the mass into the copper-containing material to form a base surface of the copper-containing material that is at least partially covered by particles comprising at least one of a copper oxide, a silicon oxide or a copper fluoride. The base surface is cleaned with a solution comprising nitric acid, hydrofluoric acid and one or more organic acids to remove at least some of the particles.
    Type: Application
    Filed: October 24, 2001
    Publication date: April 24, 2003
    Inventors: Michael T. Andreas, Paul A. Morgan
  • Publication number: 20030077903
    Abstract: The invention includes a method of cleaning a surface of a copper-containing material by exposing the surface to an acidic mixture comprising NO3−, F− and one or more organic acid anions having carboxylate groups. The invention also includes a semiconductor processing method of forming an opening to a copper-containing material. A mass is formed over a copper-containing material within an opening in a substrate. The mass contains at least one of an oxide barrier material and a dielectric material. A second opening is etched through the mass into the copper-containing material to form a base surface of the copper-containing material that is at least partially covered by particles comprising at least one of a copper oxide, a silicon oxide or a copper fluoride. The base surface is cleaned with a solution comprising nitric acid, hydrofluoric acid and one or more organic acids to remove at least some of the particles.
    Type: Application
    Filed: September 25, 2002
    Publication date: April 24, 2003
    Inventors: Michael T. Andreas, Paul A. Morgan