Patents by Inventor Michael T. Andreas
Michael T. Andreas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 6498110Abstract: A method of removing ruthenium silicide from a substrate surface which comprises exposing the ruthenium silicide surface to a solution containing chlorine and fluorine containing chemicals. In particular, said solution is designed to react with said ruthenium silicide film such that water-soluble reaction products are formed.Type: GrantFiled: March 5, 2001Date of Patent: December 24, 2002Assignee: Micron Technology, Inc.Inventors: Brenda D. Kraus, Michael T. Andreas
-
Publication number: 20020192963Abstract: Semiconductor processing methods are described which can be used to reduce the chances of an inadvertent contamination during processing. In one implementation, a semiconductor wafer backside is mechanically scrubbed to remove an undesired material prior to forming a final passivation layer over an oppositely facing semiconductor wafer frontside. In another implementation, the wafer backside is treated to remove the undesired material while treatment of the wafer frontside is restricted. In another implementation, the mechanical scrubbing of the wafer backside is conducted in connection with a polishing solution which is effective to facilitate removal of undesired material from the wafer backside. In a preferred implementation, dynamic random access memory storage capacitors are formed and the undesired material constitutes remnant polysilicon which adheres to the wafer backside during formation of a frontside capacitor storage node.Type: ApplicationFiled: August 13, 2002Publication date: December 19, 2002Inventor: Michael T. Andreas
-
Publication number: 20020164927Abstract: A chemical-mechanical polishing (CMP) method includes applying a solid abrasive material to a substrate, polishing the substrate, flocculating at least a portion of the abrasive material, and removing at least a majority portion of the flocculated portion from the substrate. Applying solid abrasive material can include applying a CMP slurry or a polishing pad comprising abrasive material. Such a method can further include applying a surfactant comprising material to the substrate to assist in effectuating flocculation of the abrasive material. Such surfactant comprising material may be cationic which includes, for example, a quaternary ammonium substituted salt. Also, for example, the surfactant comprising material may be applied during polishing, brush scrubbing, pressure spraying, or buffing.Type: ApplicationFiled: March 26, 2002Publication date: November 7, 2002Inventor: Michael T. Andreas
-
Cleaning composition containing tetraalkylammonium salt and use thereof in semiconductor fabrication
Patent number: 6468951Abstract: A composition prepared from water, hydrofluoric acid (HF) and tetraalkylammonium hydroxide (TAAH, preferably tetramethylammonium hydroxide (TMAH)) or tetraalkylammonium fluoride and solvent with or without HF or TAAH is used to clean residue from a semiconductor wafer, where the residue is formed as a result of a planarization process, such as chemical mechanical polishing. Incorporation of TMAH into an aqueous HF composition retards the rate at which the composition dissolves borophosphosilicate (BPSG) without effecting the rate at which silica is dissolved. Thus, the aqueous HF/TMAH composition may be used to completely remove silica-containing residue from a BPSG surface, with a tolerable level of BPSG removal.Type: GrantFiled: May 1, 2000Date of Patent: October 22, 2002Assignee: Micron Technology, Inc.Inventors: Eric K. Grieger, Michael T. Andreas, Michael A. Walker -
Publication number: 20020148998Abstract: A method of removing ruthenium silicide from a substrate surface which comprises exposing the ruthenium silicide surface to a solution containing chlorine and fluorine containing chemicals. In particular, said solution is designed to react with said ruthenium silicide film such that water-soluble reaction products are formed.Type: ApplicationFiled: June 7, 2002Publication date: October 17, 2002Inventors: Brenda D. Kraus, Michael T. Andreas
-
Publication number: 20020142584Abstract: Cleaning solutions and methods for removing residuals from the surface of an integrated circuit device. Such solutions and methods find particular application in the fabrication of a dual damascene structure following removal of excess portions of a silver-containing metal layer from a device surface. The cleaning solutions and methods facilitate removal of particulate residuals as well as unremoved portions of the metal layer in a single cleaning process. The cleaning solutions are dilute aqueous solutions containing hydrogen peroxide and at least one acidic component and are substantially free of particulate material. Acidic components include carboxylic acids and their salts.Type: ApplicationFiled: March 27, 2001Publication date: October 3, 2002Applicant: Micron Technology, Inc.Inventor: Michael T. Andreas
-
Publication number: 20020123235Abstract: A method of removing ruthenium silicide from a substrate surface which comprises exposing the ruthenium silicide surface to a solution containing chlorine and fluorine containing chemicals. In particular, said solution is designed to react with said ruthenium silicide film such that water- soluble reaction products are formed.Type: ApplicationFiled: March 5, 2001Publication date: September 5, 2002Inventors: Brenda D. Kraus, Michael T. Andreas
-
Patent number: 6399492Abstract: The invention includes methods of processing ruthenium silicide. In one implementation, a ruthenium silicide processing method sequentially includes forming ruthenium silicide over front and back sides of a semiconductor substrate. The backside ruthenium silicide is exposed to a chlorine and fluorine containing aqueous solution effective to remove at least some ruthenium silicide therefrom. Then, the substrate backside is exposed to an aqueous ruthenium oxide etchant solution. Then, the substrate backside is exposed to an aqueous hydrofluoric acid containing solution.Type: GrantFiled: March 15, 2001Date of Patent: June 4, 2002Assignee: Micron Technology, Inc.Inventors: Michael T. Andreas, Paul A. Morgan
-
Patent number: 6387812Abstract: The above objects and others are accomplished by a chemical mechanical polishing method and apparatus in accordance with the present invention. The apparatus includes a polishing pad having a polishing surface, and a wafer carrier for supporting a wafer disposed opposite to the polishing pad. The wafer carrier is positionable in a plane that is substantially parallel with the polishing surface, such that a surface of the wafer can be polished by contacting the polishing pad. The polishing surface and the wafer carrier are moved in parallel relative motion to mechanically abrade the wafer surface against the polishing surface in the presence of a polishing slurry. A slurry source containing the polishing slurry is connected to a slurry dispense line to dispense the slurry onto the polishing surface of the polishing pad.Type: GrantFiled: May 19, 2000Date of Patent: May 14, 2002Assignee: Micron Technology, Inc.Inventor: Michael T. Andreas
-
Publication number: 20020052173Abstract: A chemical-mechanical polishing (CMP) method includes applying a solid abrasive material to a substrate, polishing the substrate, flocculating at least a portion of the abrasive material, and removing at least a majority portion of the flocculated portion from the substrate. Applying solid abrasive material can include applying a CMP slurry or a polishing pad comprising abrasive material. Such a method can further include applying a surfactant comprising material to the substrate to assist in effectuating flocculation of the abrasive material. Such surfactant comprising material may be cationic which includes, for example, a quaternary ammonium substituted salt. Also, for example, the surfactant comprising material may be applied during polishing, brush scrubbing, pressure spraying, or buffing.Type: ApplicationFiled: November 20, 2001Publication date: May 2, 2002Inventor: Michael T. Andreas
-
Patent number: 6375548Abstract: A chemical-mechanical polishing (CMP) method includes applying a solid abrasive material to a substrate, polishing the substrate, flocculating at least a portion of the abrasive material, and removing at least a majority portion of the flocculated portion from the substrate. Applying solid abrasive material can include applying a CMP slurry or a polishing pad comprising abrasive material. Such a method can further include applying a surfactant comprising material to the substrate to assist in effectuating flocculation of the abrasive material. Such surfactant comprising material may be cationic which includes, for example, a quaternary ammonium substituted salt. Also, for example, the surfactant comprising material may be applied during polishing, brush scrubbing, pressure spraying, or buffing.Type: GrantFiled: December 30, 1999Date of Patent: April 23, 2002Assignee: Micron Technology, Inc.Inventor: Michael T. Andreas
-
Patent number: 6358325Abstract: An integrated cleaner with scrubber for cleaning and scrubbing semiconductor substrates that includes a housing that contains both a cleaning module and a scrubbing module. The cleaning module is capable of performing a wet-cleaning process on a batch of the semiconductor substrates. The cleaning module comprises a cleaning tank in which a batch of semiconductor substrates are cleaned. A megasonic device can be attached to the cleaning tank to enhance cleaning. The scrubbing module includes a plurality of scrubbers each of which scrubs a semiconductor substrate. The integrated cleaner with scrubber also comprises a robot for moving the semiconductor substrates between the cleaning and scrubbing modules.Type: GrantFiled: December 20, 1999Date of Patent: March 19, 2002Assignee: Micron Technology, Inc.Inventor: Michael T. Andreas
-
Publication number: 20010023127Abstract: Methods for making an aluminum-containing metallization structure, methods and solutions for cleaning a polished aluminum-containing layer, and the structures formed by these methods. The methods for making the aluminum-containing metallization structure are practiced by providing a substrate, forming a metal layer with an upper surface containing aluminum over the substrate, polishing the metal layer, and contacting the polished surface of the metal layer with a solution comprising water and at least one corrosion-inhibiting agent. The method for cleaning the polished aluminum-containing layer is practiced by contacting a polished aluminum-containing layer with a solution comprising water and a corrosion-inhibiting agent. In these methods and solutions, the water may be deionized water, the corrosion-inhibiting agent may be citric acid or one of its salts, and the solution may contain additional additives, such as chelating agents, buffers, oxidants, anti-oxidants, and surfactants.Type: ApplicationFiled: April 25, 2001Publication date: September 20, 2001Inventor: Michael T. Andreas
-
Patent number: 6273100Abstract: Apparatuses and methods are disclosed for submerged cleaning of substrates and the like. The apparatus includes a container holding a bath of cleaning fluid and, within the container, the combination of a submerged brush scrubber, submerged megasonic transducer and Marangoni drying devices. In operation, at least a portion of a substrate is submerged in the bath of cleaning fluid where its surfaces are contacted by one or more brush scrubbers while beams produced by megasonic transducers are directed parallel to the surface of the substrate along the surface of the substrate. The substrate is removed from the bath of cleaning fluid and rinsed with rinse water. A Marangoni flow is induced on the surface of the substrate and the substrate is allowed to dry through one or more means of drying, thereby rendering the substrate free from particulate contamination and dried of any residual fluid from the cleaning process.Type: GrantFiled: August 27, 1998Date of Patent: August 14, 2001Assignee: Micron Technology, Inc.Inventors: Michael T. Andreas, Michael A. Walker
-
Patent number: 6269511Abstract: Apparatuses and methods are disclosed for submerged cleaning of substrates and the like. The apparatus includes a container holding a bath of cleaning fluid and, within the container, the combination of a submerged brush scrubber, submerged megasonic transducer and Marangoni drying devices. In operation, at least a portion of a substrate is submerged in the bath of cleaning fluid where its surfaces are contacted by one or more brush scrubbers while beams produced by megasonic transducers are directed parallel to the surface of the substrate along the surface of the substrate. The substrate is removed from the bath of cleaning fluid and rinsed with rinse water. A Marangoni flow is induced on the surface of the substrate and the substrate is allowed to dry through one or more means of drying, thereby rendering the substrate free from particulate contamination and dried of any residual fluid from the cleaning process.Type: GrantFiled: October 4, 2000Date of Patent: August 7, 2001Assignee: Micron Technology, Inc.Inventors: Michael T. Andreas, Michael A. Walker
-
Patent number: 6265781Abstract: Methods for making an aluminum-containing metallization structure, methods and solutions for cleaning a polished aluminum-containing layer, and the structures formed by these methods. The methods for making the aluminum-containing metallization structure are practiced by providing a substrate, forming a metal layer with an upper surface containing aluminum over the substrate, polishing the metal layer, and contacting the polished surface of the metal layer with a solution comprising water and at least one corrosion-inhibiting agent. The method for cleaning the polished aluminum-containing layer is practiced by contacting a polished aluminum-containing layer with a solution comprising water and a corrosion-inhibiting agent. In these methods and solutions, the water may be deionized water, the corrosion-inhibiting agent may be citric acid or one of its salts, and the solution may contain additional additives, such as chelating agents, buffers, oxidants, anti-oxidants, and surfactants.Type: GrantFiled: September 15, 1998Date of Patent: July 24, 2001Assignee: Micron Technology, Inc.Inventor: Michael T. Andreas
-
Patent number: 6077785Abstract: The above objects and others are accomplished by a chemical mechanical polishing method and apparatus in accordance with the present invention. The apparatus includes a polishing pad having a polishing surface, and a wafer carrier for supporting a wafer disposed opposite to the polishing pad. The wafer carrier is positionable in a plane that is substantially parallel with the polishing surface, such that a surface of the wafer can be polished by contacting the polishing pad. The polishing surface and the wafer carrier are moved in parallel relative motion to mechanically abrade the wafer surface against the polishing surface in the presence of a polishing slurry. A slurry source containing the polishing slurry is connected to a slurry dispense line to dispense the slurry onto the polishing surface of the polishing pad.Type: GrantFiled: November 12, 1998Date of Patent: June 20, 2000Assignee: Micron Technology, Inc.Inventor: Michael T. Andreas
-
Cleaning composition containing tetraalkylammonium salt and use thereof in semiconductor fabrication
Patent number: 6044851Abstract: A composition prepared from water, hydrofluoric acid (HF) and tetraalkylammonium hydroxide (TAAH, preferably tetramethylammonium hydroxide (TMAH)) or tetraalkylammonium fluoride and solvent with or without HF or TAAH is used to clean residue from a semiconductor wafer, where the residue is formed as a result of a planarization process, such as chemical mechanical polishing. Incorporation of TMAH into an aqueous HF composition retards the rate at which the composition dissolves borophosphosilicate (BPSG) without effecting the rate at which silica is dissolved. Thus, the aqueous HF/TMAH composition may be used to completely remove silica-containing residue from a BPSG surface, with a tolerable level of BPSG removal.Type: GrantFiled: June 15, 1998Date of Patent: April 4, 2000Assignee: Micron Technology, Inc.Inventors: Eric K. Grieger, Michael T. Andreas, Michael A. Walker -
Patent number: 5963814Abstract: A container capacitor having a recessed conductive layer. The recessed conductive layer is typically made of polysilicon. The recessed structure reduces the chances of polysilicon "floaters," which are traces of polysilicon that remain on the surface of the substrate, coupling adjacent capacitors together to create short circuits. The disclosed method of creating such a recessed structure uses chemical mechanical planarization to remove the layer of polysilicon and an overlying layer of photoresist from the upper surface of the substrate in which a container is formed. A wet etch selectively isolates a rim of the polysilicon within the container to recess the a rim, while the remainder of the polysilicon in the container is protected by the layer of photoresist.Type: GrantFiled: October 28, 1997Date of Patent: October 5, 1999Assignee: Micron Technology, Inc.Inventors: Michael A. Walker, Michael T. Andreas
-
Patent number: 5895550Abstract: The above objects and others are accomplished by a chemical mechanical polishing method and apparatus in accordance with the present invention. The apparatus includes a polishing pad having a polishing surface, and a wafer carrier for supporting a wafer disposed opposite to the polishing pad. The wafer carrier is positionable in a plane that is substantially parallel with the polishing surface, such that a surface of the wafer can be polished by contacting the polishing pad. The polishing surface and the wafer carrier are moved in parallel relative motion to mechanically abrade the wafer surface against the polishing surface in the presence of a polishing slurry. A slurry source containing the polishing slurry is connected to a slurry dispense line to dispense the slurry onto the polishing surface of the polishing pad.Type: GrantFiled: December 16, 1996Date of Patent: April 20, 1999Assignee: Micron Technology, Inc.Inventor: Michael T. Andreas