Patents by Inventor Michael Weiner

Michael Weiner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210117575
    Abstract: A method for obfuscation of operations using minimal additional hardware is presented herein. The method can begin by executing a first iteration of a set of computations, the execution of the set of computations resulting in a first iteration output. The method can continue by executing a second iteration of the set of computations, wherein the second execution is distinct from the first iteration but should satisfy a matching condition. The distinction can be a rearrangement of sub-operations, insertion of dummy sub-operations, or a combination of the two. After the iterations are complete, the iteration outputs can be compared. If the comparison of the first iteration output and the second iteration output satisfy the matching condition, the process result can be output. If the matching condition is not satisfied, an error detected signal can be output.
    Type: Application
    Filed: October 17, 2019
    Publication date: April 22, 2021
    Inventors: Michael WEINER, Oded GOLOMBEK, David YELLIN
  • Patent number: 10969996
    Abstract: A hardware queue for an integrated circuit device includes an internal queue memory and at least one external queue memory. The internal queue memory and the external queue memory are operated as a continuous hardware queue memory by monitoring occupancy of the internal queue memory and, based on that occupancy, controlling an internal tail pointer indicating a next write point for inserting new data into the internal queue memory, an internal head pointer indicating a next read point for extracting data from the internal queue memory based on order of insertion, at least one external tail pointer indicating a next write point for inserting new data into the external queue memory, at least one external head pointer indicating a next read point for extracting data from the external queue memory based on order of insertion, and wrap pointers indicating transitions between the internal queue memory and the external queue memory.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: April 6, 2021
    Assignee: Marvell Israel (M.I.S.L) Ltd.
    Inventors: Moran Noiman, Michael Weiner, Eliya Babitsky
  • Publication number: 20210032368
    Abstract: The present disclosure provides, among other things, a method of generating antibodies that recognize a protein of interest. In some aspects, the protein of interest contains a post translational modification (PTM) site. Provided in some aspects is a method of generating non-PTM-binding antibodies that specifically bind a site without post translational modification. Provided in some aspects is a pan-PTM-binding antibody library comprising a plurality of antibodies derived from a pre-existing antibody that specifically recognizes a PTM on a peptide or protein of interest. Provided in further aspects is a non-PTM-binding antibody library comprising a plurality of antibodies derived from a pre-existing antibody that specifically recognizes a PTM on a peptide or protein of interest.
    Type: Application
    Filed: August 3, 2018
    Publication date: February 4, 2021
    Inventors: Michael Weiner, Margaret Kiss
  • Publication number: 20200360876
    Abstract: The present invention provides novel microfluidic substrates and methods that are useful for performing biological, chemical and diagnostic assays. The substrates can include a plurality of electrically addressable, channel bearing fluidic modules integrally arranged such that a continuous channel is provided for flow of immiscible fluids.
    Type: Application
    Filed: August 5, 2020
    Publication date: November 19, 2020
    Inventors: Darren Roy Link, Michael Weiner, David Marran, Jonathan M. Rothberg
  • Publication number: 20200157529
    Abstract: The present disclosure provides, among other things, methods for generating antibodies against a target protein. In some embodiments, a library is provided comprising a plurality of tether antibodies comprising an antigen binding region and a ligand that binds to a target protein. In some embodiments, a library is provided comprising a plurality of candidate antibodies for binding to a target protein.
    Type: Application
    Filed: August 3, 2018
    Publication date: May 21, 2020
    Inventors: Michael Weiner, Margaret Kiss, Qi Zhao
  • Publication number: 20200151077
    Abstract: Aspects of the present disclosure relate to an apparatus comprising analogue circuitry comprising an entropy source, the entropy source being configured to provide a random output. The apparatus comprises first digital circuitry to receive the output of the entropy source and, based on said output, generate random numbers, and second digital circuitry to receive the output of the entropy source and, based on said output, generate random numbers, the second digital circuitry being a duplicate of the first digital circuitry. The apparatus comprises difference detection circuitry to determine a difference of operation between the first digital circuitry and the second digital circuitry. Each of the first digital circuitry and the second digital circuitry comprises entropy checking circuitry to check the entropy of the output of the entropy source.
    Type: Application
    Filed: November 14, 2018
    Publication date: May 14, 2020
    Inventors: Kar-Lik Kasim WONG, Alessandro RENZI, Michael WEINER, Avi SHIF, Oded GOLOMBEK
  • Patent number: 10639597
    Abstract: The present invention provides novel microfluidic substrates and methods that are useful for performing biological, chemical and diagnostic assays. The substrates can include a plurality of electrically addressable, channel bearing fluidic modules integrally arranged such that a continuous channel is provided for flow of immiscible fluids.
    Type: Grant
    Filed: February 1, 2018
    Date of Patent: May 5, 2020
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Darren Roy Link, Michael Weiner, David Marran, Jonathan M. Rothberg
  • Patent number: 10633652
    Abstract: The present invention provides novel microfluidic devices and methods that are useful for performing high-throughput screening assays and combinatorial chemistry. The invention provides for aqueous based emulsions containing uniquely labeled cells, enzymes, nucleic acids, etc., wherein the emulsions further comprise primers, labels, probes, and other reactants. An oil based carrier-fluid envelopes the emulsion library on a microfluidic device, such that a continuous channel provides for flow of the immiscible fluids, to accomplish pooling, coalescing, mixing, sorting, detection, etc., of the emulsion library.
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: April 28, 2020
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Darren Roy Link, Laurent Boitard, Jeffrey Branciforte, Yves Charles, Gilbert Feke, John Q. Lu, David Marran, Ahmadali Tabatabai, Michael Weiner, Wolfgang Hinz, Jonathan M. Rothberg
  • Patent number: 10625220
    Abstract: The present invention provides novel microfluidic substrates and methods that are useful for performing biological, chemical and diagnostic assays. The substrates can include a plurality of electrically addressable, channel bearing fluidic modules integrally arranged such that a continuous channel is provided for flow of immiscible fluids.
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: April 21, 2020
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Darren Roy Link, Michael Weiner, David Marran, Jonathan M. Rothberg
  • Publication number: 20200032245
    Abstract: The identification of binding moieties capable of selectively interacting with one or more target antigens is of scientific, medical, and commercial value. Disclosed herein are methods and compositions for the identification, labeling and/or retrieval of cognate binding moieties.
    Type: Application
    Filed: March 11, 2019
    Publication date: January 30, 2020
    Inventors: Michael WEINER, Margaret KISS
  • Patent number: 10501344
    Abstract: A method reuses produced water resulting from a fossil fuel extraction operation. The method includes providing the produced water as an input to an electrodialysis system. The method also includes running the electrodialysis system to produce a diluate and a concentrate. The diluate is contaminated so as to have a conductivity of no less than 0.1 Siemens/meter. The method also includes reformulating the diluate to produce fossil fuel extraction fluid. The method also includes using the produced fossil fuel extraction fluid in the fossil fuel extraction operation. An electrodialysis system includes first and second stacks. The electrodialysis system also includes first and second voltage sources, coupled to the first and second stacks, so as to apply a first voltage to the first stack lower by at least about 10% than a second voltage to the second stack.
    Type: Grant
    Filed: April 2, 2019
    Date of Patent: December 10, 2019
    Assignees: Massachusetts Institute of Technology, King Fahd University of Petroleum and Minerals
    Inventors: John H. Lienhard, Ronan Killian McGovern, Lige Sun, Adam Michael Weiner, Syed M. Zubair
  • Publication number: 20190345486
    Abstract: Disclosed herein is an efficient method of generating a library of variants of a sequence of interest, such as may be used in directed evolution, in one embodiment, the method includes an amplification reaction, e.g. error-prone PCR, to generate double-stranded DNA (dsDNA) variants of a sequence of interest, after which one strand of the dsDNA variants may be selectively degraded to produce single-stranded DNA (ssDNA) variants. The ssDNA variants may be hybridized to ssDNA intermediaries, e.g., uracilated circular ssDNA intermediaries, to form heteroduplex DNA, which may be transformed into cells, such as E. coli cells, yielding a library of variants. This method eliminates the inefficient sub-cloning steps and the need for costly primer sets required by many prior methods.
    Type: Application
    Filed: April 12, 2019
    Publication date: November 14, 2019
    Inventors: Michael WEINER, Margaret KISS
  • Publication number: 20190225514
    Abstract: A method reuses produced water resulting from a fossil fuel extraction operation. The method includes providing the produced water as an input to an electrodialysis system. The method also includes running the electrodialysis system to produce a diluate and a concentrate. The diluate is contaminated so as to have a conductivity of no less than 0.1 Siemens/meter. The method also includes reformulating the diluate to produce fossil fuel extraction fluid. The method also includes using the produced fossil fuel extraction fluid in the fossil fuel extraction operation. An electrodialysis system includes first and second stacks. The electrodialysis system also includes first and second voltage sources, coupled to the first and second stacks, so as to apply a first voltage to the first stack lower by at least about 10% than a second voltage to the second stack.
    Type: Application
    Filed: April 2, 2019
    Publication date: July 25, 2019
    Inventors: John H. Lienhard, Ronan Killian McGovern, Lige Sun, Adam Michael Weiner, Syed M. Zubair
  • Patent number: 10301617
    Abstract: Disclosed herein is an efficient method of generating a library of variants of a sequence of interest, such as may be used in directed evolution, in one embodiment, the method includes an amplification reaction, e.g. error-prone PCR, to generate double-stranded DNA (dsDNA) variants of a sequence of interest, after which one strand of the dsDNA variants may be selectively degraded to produce single-stranded DNA (ssDNA) variants. The ssDNA variants may be hybridized to ssDNA intermediaries, e.g., uracilated circular ssDNA intermediaries, to form heteroduplex DNA, which may be transformed into cells, such as E. coli cells, yielding a library of variants. This method eliminates the inefficient sub-cloning steps and the need for costly primer sets required by many prior methods.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: May 28, 2019
    Assignee: AxioMx, Inc.
    Inventors: Michael Weiner, Margaret Kiss
  • Patent number: 10273170
    Abstract: A method reuses produced water resulting from a fossil fuel extraction operation. The method includes providing the produced water as an input to an electrodialysis system. The method also includes running the electrodialysis system to produce a diluate and a concentrate. The diluate is contaminated so as to have a conductivity of no less than 0.1 Siemens/meter. The method also includes reformulating the diluate to produce fossil fuel extraction fluid. The method also includes using the produced fossil fuel extraction fluid in the fossil fuel extraction operation. An electrodialysis system includes first and second stacks. The electrodialysis system also includes first and second voltage sources, coupled to the first and second stacks, so as to apply a first voltage to the first stack lower by at least about 10% than a second voltage to the second stack.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: April 30, 2019
    Assignees: Massachusetts Institute of Technology, King Fahd University of Petroleum and Minerals
    Inventors: John H. Lienhard, Ronan Killian McGovern, Lige Sun, Adam Michael Weiner, Syed M. Zubair
  • Patent number: 10273472
    Abstract: The identification of binding moieties capable of selectively interacting with one or more target antigens is of scientific, medical, and commercial value. Disclosed herein are methods and compositions for the identification, labeling, and/or retrieval of cognate binding moieties.
    Type: Grant
    Filed: December 4, 2014
    Date of Patent: April 30, 2019
    Assignee: AxioMx, Inc.
    Inventors: Michael Weiner, Margaret Kiss
  • Patent number: 10193831
    Abstract: A packet processing system and method for processing data units are provided. A packet processing system includes a processor, first memory having a first latency, and second memory having a second latency that is higher than the first latency. A first portion of a queue for queuing data units utilized by the processor is disposed in the first memory, and a second portion of the queue is disposed in the second memory. A queue manager is configured to push new data units to the second portion of the queue and generate an indication linking a new data unit to an earlier-received data unit in the queue. The queue manager is configured to transfer one or more queued data units from the second portion of the queue to the first portion of the queue prior to popping the queued data unit from the queue, and to update the indication.
    Type: Grant
    Filed: January 23, 2015
    Date of Patent: January 29, 2019
    Assignee: Marvell Israel (M.I.S.L) Ltd.
    Inventors: Itay Peled, Dan Ilan, Michael Weiner, Einat Ophir, Moshe Anschel
  • Publication number: 20190002558
    Abstract: Disclosed are methods of identifying binding moieties that recognize antigens displayed on cells, such as membrane proteins or recombinant proteins that display eptiopes on the surface of cells. Binding moieties capable of binding membrane proteins can be difficult to obtain because these proteins can depend on their native environments for structural integrity. In some methods scFv phage display libraries are panned against whole cells expressing a membrane protein in an emulsion. Certain methods further permit discrimination of binding moieties according to their affinity or avidity for a target. This approach allows rapid identification of cell surface epitope specific antibodies for research, diagnostics, and immunotherapeutics.
    Type: Application
    Filed: June 1, 2018
    Publication date: January 3, 2019
    Inventors: Michael WEINER, Margaret KISS
  • Publication number: 20180355350
    Abstract: The present invention provides novel microfluidic devices and methods that are useful for performing high-throughput screening assays and combinatorial chemistry. The invention provides for aqueous based emulsions containing uniquely labeled cells, enzymes, nucleic acids, etc., wherein the emulsions further comprise primers, labels, probes, and other reactants. An oil based carrier-fluid envelopes the emulsion library on a microfluidic device, such that a continuous channel provides for flow of the immiscible fluids, to accomplish pooling, coalescing, mixing, sorting, detection, etc., of the emulsion library.
    Type: Application
    Filed: June 1, 2018
    Publication date: December 13, 2018
    Inventors: Darren Roy Link, Laurent Boitard, Jeffrey Branciforte, Yves Charles, Gilbert Feke, John Q. Lu, David Marran, Ahmadali Tabatabai, Michael Weiner, Wolfgang Hinz, Jonathan M. Rothberg
  • Publication number: 20180353913
    Abstract: The present invention generally relates to droplet libraries and to systems and methods for the formation of libraries of droplets. The present invention also relates to methods utilizing these droplet libraries in various biological, chemical, or diagnostic assays.
    Type: Application
    Filed: August 20, 2018
    Publication date: December 13, 2018
    Inventors: Darren Roy Link, Brian Hutchison, Michael L. Samuels, Michael Weiner