Patents by Inventor Mike F. Chang

Mike F. Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7633140
    Abstract: A semiconductor package includes a lead frame having a plurality of leads and a lead frame pad, the lead frame pad including a die coupled thereto, at least one of the plurality of leads having an external portion sloped upwards relative to a bottom surface of the package, metal connectors connecting the die to the plurality of leads, and a resin body encapsulating the die, metal connectors and at least a portion of the lead frame.
    Type: Grant
    Filed: December 9, 2003
    Date of Patent: December 15, 2009
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Leeshawn Luo, Anup Bhalla, Sik K. Lui, Yueh-Se Ho, Mike F. Chang, Xiao Tiang Zhang
  • Patent number: 7208818
    Abstract: A semiconductor package including a relatively thick lead frame having a plurality of leads and a first lead frame pad, the first lead frame pad including a die coupled thereto, bonding wires connecting the die to the plurality of leads, the bonding wires being aluminum, and a resin body encapsulating the die, bonding wires and at least a portion of the lead frame.
    Type: Grant
    Filed: July 20, 2004
    Date of Patent: April 24, 2007
    Assignee: Alpha and Omega Semiconductor Ltd.
    Inventors: Leeshawn Luo, Anup Bhalla, Sik K. Lui, Yueh-Se Ho, Mike F. Chang, Xiao Tian Zhang
  • Patent number: 6444527
    Abstract: A trenched field effect transistor suitable especially for low voltage power applications provides low leakage blocking capability due to a gate controlled barrier region between the source region and drain region. Forward conduction occurs through an inversion region between the source region and drain region. Blocking is achieved by a gate controlled depletion barrier. Located between the source and drain regions is a fairly lightly doped body region. The gate electrode, located in a trench, extends through the source and body regions and in some cases into the upper portion of the drain region. The dopant type of the polysilicon gate electrode is the same type as that of the body region. The body region is a relatively thin and lightly doped epitaxial layer grown upon a highly doped low resistivity substrate of opposite conductivity type. In the blocking state the epitaxial body region is depleted due to applied drain-source voltage, hence a punch-through type condition occurs vertically.
    Type: Grant
    Filed: January 11, 2000
    Date of Patent: September 3, 2002
    Assignee: Siliconix incorporated
    Inventors: Brian H. Floyd, Fwu-Iuan Hshieh, Mike F. Chang
  • Publication number: 20020055232
    Abstract: A trenched field effect transistor suitable especially for low voltage power applications provides low leakage blocking capability due to a gate controlled barrier region between the source region and drain region. Forward conduction occurs through an inversion region between the source region and drain region. Blocking is achieved by a gate controlled depletion barrier. Located between the source and drain regions is a fairly lightly doped body region. The gate electrode, located in a trench, extends through the source and body regions and in some cases into the upper portion of the drain region. The dopant type of the polysilicon gate electrode is the same type as that of the body region. The body region is a relatively thin and lightly doped epitaxial layer grown upon a highly doped low resistivity substrate of opposite conductivity type. In the blocking state the epitaxial body region is depleted due to applied drain-source voltage, hence a punch-through type condition occurs vertically.
    Type: Application
    Filed: January 11, 2000
    Publication date: May 9, 2002
    Inventors: BRIAN H. FLOYD, FWU-IUAN HSHIEH, MIKE F. CHANG
  • Patent number: 6277695
    Abstract: The metal contact to the source and body regions in a vertical planar DMOSFET is formed by fabricating a sidewall spacer on the gate of the MOSFET. With the metal contact self-aligned to the gate in this way, the lateral dimension of each of the cells in the DMOSFET can be significantly reduced without the risk of a short between the contact and the gate, and the packing density of the cells can be increased. In this way, significant reductions in the on-resistance of the device can be achieved.
    Type: Grant
    Filed: April 16, 1999
    Date of Patent: August 21, 2001
    Assignee: Siliconix Incorporated
    Inventors: Richard K. Williams, Sung-Shan Tai, Dorman C. Pitzer, Wayne B. Grabowski, Anthony Tsui, Mike F. Chang
  • Patent number: 6090716
    Abstract: In the present method, a semiconductor substrate is provided with an epitaxial layer thereon. A source/drain region is provided in a portion of the epitaxial layer, and a plurality of trenches are etched in the epitaxial layer and extend into the substrate, to define a plurality of mesas.An oxide layer of generally uniform thickness is provided over the mesas and in the trenches, and a polysilicon layer is provided over the oxide layer and is etched so that the oxide layer overlying the mesas is exposed, and the top surface of the polysilicon within the trenches is below the level of the tops of the mesas.A layer of spin-on-glass (SOG) is provided, and the SOG layer and oxide layer are etched substantially to the level of the tops of the mesas, to expose the tops of the mesas and to leave the portions of the SOG over the respective polysilicon portions in the trenches substantially coplaner with the tops of the mesas.
    Type: Grant
    Filed: December 17, 1996
    Date of Patent: July 18, 2000
    Assignee: Siliconix Incorporated
    Inventors: Brian H. Floyd, Chin H. Ho, Mike F. Chang, Min Juang, Brian Cheung, Karen Lee
  • Patent number: 6069043
    Abstract: A trenched field effect transistor suitable especially for low voltage power applications provides low leakage blocking capability due to a gate controlled barrier region between the source region and drain region. Forward conduction occurs through an inversion region between the source region and drain region. Blocking is achieved by a gate controlled depletion barrier. Located between the source and drain regions is a fairly lightly doped body region. The gate electrode, located in a trench, extends through the source and body regions and in some cases into the upper portion of the drain region. The dopant type of the polysilicon gate electrode is the same type as that of the body region. The body region is a relatively thin and lightly doped epitaxial layer grown upon a highly doped low resistivity substrate of opposite conductivity type. In the blocking state the epitaxial body region is depleted due to applied drain-source voltage, hence a punch-through type condition occurs vertically.
    Type: Grant
    Filed: November 12, 1997
    Date of Patent: May 30, 2000
    Assignee: Siliconix incorporated
    Inventors: Brian H. Floyd, Fwu-Iuan Hshieh, Mike F. Chang
  • Patent number: 5998834
    Abstract: A trenched-gate power MOSFET includes a body region that is formed within a mesa between adjacent gate trenches. The doping concentration of the body region is established such that the body region does not fully deplete at normal drain voltages. The MOSFET also includes a gate which is doped with material of a conductivity type opposite to that of the body. The width of the mesa and the doping concentration of the body region and gate are established such that the body region is fully depleted by the combined effects of the source-body and drain body junctions and the gate. As a result, the conventional source-body short can be eliminated, providing a greater cell packing density and lower on-resistance while maintaining acceptable levels of leakage current when the MOSFET is in the off-state.
    Type: Grant
    Filed: May 22, 1996
    Date of Patent: December 7, 1999
    Assignee: Siliconix Incorporated
    Inventors: Richard K. Williams, Brian H. Floyd, Wayne Grabowski, Mohamed Darwish, Mike F. Chang
  • Patent number: 5981344
    Abstract: To reduce susceptibility to punchthrough, the channel region of the P body region of a trench field effect transistor is formed in a layer of lightly doped epitaxial silicon. As a result, the channel region has less counterdoping from the background epitaxial silicon and has a greater net P type dopant concentration. Due to the higher net dopant concentration of the P body region, the depletion regions on either side of the P body region expand less far inward through the P body region at a given voltage, thereby rendering the transistor less susceptible to source-to-drain punchthrough. To maintain a low R.sub.DSon, the relatively high conductivity of an accumulation region formed along a sidewall of the trench of the transistor when the transistor is on is used to form a conductive path from the channel region to an underlying relatively highly conductive layer upon which the lightly doped epitaxial layer is formed.
    Type: Grant
    Filed: June 4, 1996
    Date of Patent: November 9, 1999
    Assignee: Siliconix incorporated
    Inventors: Fwu-Iuan Hshieh, Mike F. Chang
  • Patent number: 5929481
    Abstract: A trenched DMOS transistor overcomes the problem of a parasitic JFET at the trench bottom (caused by deep body regions extending deeper than the trench) by providing a doped trench bottom implant region at the bottom of the trench and extending into the surrounding drift region. This trench bottom implant region has the same doping type, but is more highly doped, than the surrounding drift region. The trench bottom implant region significantly reduces the parasitic JFET resistance by optimizing the trench bottom implant dose, without creating reliability problems.
    Type: Grant
    Filed: November 4, 1997
    Date of Patent: July 27, 1999
    Assignee: Siliconix incorporated
    Inventors: Fwu-Iuan Hshieh, Brian H. Floyd, Mike F. Chang, Danny Nim, Daniel Ng
  • Patent number: 5923979
    Abstract: A planar DMOS power transistor (MOSFET) fabricated using only three masking steps, resulting in a significant reduction in fabrication cost. The resulting device is in terms of operations similar to prior art devices formed using more masking steps. Both the source and body regions are formed by implantations through the identical openings in the polysilicon/gate oxide layers into the substrate. After a subsequent glass layer is deposited and masked to expose openings, body contact regions are implanted into the source regions by overdosing the source region dopant concentration. The third masking step is the metal mask which also forms a termination structure.
    Type: Grant
    Filed: September 3, 1997
    Date of Patent: July 13, 1999
    Assignee: Siliconix Incorporated
    Inventors: Dorman C. Pitzer, Mike F. Chang, Hong Wang
  • Patent number: 5917216
    Abstract: A trenched MOSFET in its on-state conducts current through an accumulation region and through an inverted depletion barrier layer located along the trench sidewalls. Blocking is achieved by gate control depletion of the adjacent region and by the depletion barrier layer (having the appearance of "ears" in a cross sectional view and being of opposite doping type to the adjacent region) which extends laterally from the trench sidewalls into the drift region. This MOSFET has superior on-state specific resistance to that of prior art trenched MOSFETs and also has good performance in terms of on state resistance, while having superior blocking characteristics to those of prior art trenched MOSFETs. The improvement in the blocking characteristic is provided by the depletion barrier layer which is a semiconductor doped region. In the blocking state, the depletion barrier layer is fully or almost fully depleted to prevent parasitic bipolar conduction.
    Type: Grant
    Filed: October 31, 1996
    Date of Patent: June 29, 1999
    Assignee: Siliconix incorporated
    Inventors: Brian H. Floyd, Dorman C. Pitzer, Fwu-Iuan Hshieh, Mike F. Chang
  • Patent number: 5910669
    Abstract: A DMOS field effect transistor having its gate electrode located in a trench includes a lightly doped epitaxial layer overlying the usual epitaxial layer. The trench penetrates only part way through the upper epitaxial layer which is more lightly doped than is the underlying lower epitaxial layer. The lightly doped upper epitaxial layer reduces the electric field at the bottom of the trench, thus protecting the gate oxide from breakdown during high voltage operation. Advantageously the upper portion of the lightly doped upper epitaxial layer has little adverse effect on the transistor's on resistance.
    Type: Grant
    Filed: July 24, 1992
    Date of Patent: June 8, 1999
    Assignee: Siliconix incorporated
    Inventors: Mike F. Chang, Fwu-Iuan Hshieh, Sze-Hon Kwan, King Owyang
  • Patent number: 5821583
    Abstract: A trenched DMOS transistor has significantly reduced on-resistance. A lightly doped P tub is formed surrounding the P+ body region in order to enhance avalanche breakdown. Thus the epitaxial layer resistivity can be decreased to reduce device on-resistance, while the desired breakdown voltage is also achieved. The on-resistance is further reduced by adding a pre-initial oxidation implant, i.e. phosphorous for an N channel device or boron for a P channel device. This forms a more heavily doped JFET or pinch region at the bottom of the trench and in the upper portion of the drift region. This N JFET region (which is P doped for a P channel device) is more heavily doped than the underlying epitaxial layer and surrounds the trench bottom, thus reducing on-resistance by increasing local doping concentration where otherwise a parasitic JFET would be present.
    Type: Grant
    Filed: March 6, 1996
    Date of Patent: October 13, 1998
    Assignee: Siliconix incorporated
    Inventors: Fwu-Iuan Hshieh, Lih-Ying Ching, Hoang Tran, Mike F. Chang
  • Patent number: 5767578
    Abstract: An integrated circuit chip has full trench dielectric isolation of each portion of the chip. Initially the chip substrate is of conventional thickness and has semiconductor devices formed in it. After etching trenches in the substrate and filling them with dielectric material, a heat sink cap is attached to the passivation layer on the substrate front side surface. The passivation layer is a CVD diamond film which provides both electrical insulation and thermal conductivity. The substrate backside surface is removed (by grinding and/or CMP) to expose the bottom portion of the trenches. This fully isolates each portion of the die and eliminates mechanical stresses at the trench bottoms. Thereafter drain or collector electrical contacts are provided on the substrate backside surface. In a flip chip version, frontside electrical contacts extend through the frontside passivation layer to the heat sink cap.
    Type: Grant
    Filed: April 19, 1996
    Date of Patent: June 16, 1998
    Assignee: Siliconix incorporated
    Inventors: Mike F. Chang, King Owyang, Fwu-Iuan Hshieh, Yueh-Se Ho, Jowei Dun, Hans-Jurgen Fusser, Reinhard Zachai
  • Patent number: 5757081
    Abstract: An integrated circuit chip has full trench dielectric isolation of each portion of the chip. Initially the chip substrate is of conventional thickness and has semiconductor devices formed in it. After etching trenches in the substrate and filling them with dielectric material, a heat sink cap is attached to the passivation layer on the substrate front side surface. The substrate backside surface is removed (by grinding or CMP) to expose the bottom portion of the trenches. This fully isolates each portion of the die and eliminates mechanical stresses at the trench bottoms. Thereafter drain or collector electrical contacts are provided on the substrate backside surface. In a flip chip version, frontside electrical contacts extend through the frontside passivation layer to the heat sink cap.
    Type: Grant
    Filed: February 20, 1996
    Date of Patent: May 26, 1998
    Assignee: Siliconix Incorporated
    Inventors: Mike F. Chang, King Owyang, Fwu-Iuan Hshieh, Yueh-Se Ho, Jowei Dun
  • Patent number: 5753529
    Abstract: An integrated circuit chip has full trench dielectric isolation of each portion of the chip. Initially the chip substrate is of conventional thickness and has semiconductor devices formed in it. After etching trenches in the substrate and filling them with dielectric material, a heat sink cap is attached to the passivation layer on the substrate front side surface. The substrate backside surface is removed (by grinding or CMP) to expose the bottom portion of the trenches. This fully isolates each portion of the die and eliminates mechanical stresses at the trench bottoms. Thereafter drain or collector electrical contacts are provided on the substrate backside surface. In a flip chip version, frontside electrical contacts extend through the frontside passivation layer to the heat sink cap.
    Type: Grant
    Filed: May 19, 1995
    Date of Patent: May 19, 1998
    Assignee: Siliconix incorporated
    Inventors: Mike F. Chang, King Owyang, Fwu-Iuan Hshieh, Yueh-Se Ho, Jowei Dun
  • Patent number: 5750416
    Abstract: A power field effect transistor has a laterally extending channel region which is not formed by double diffusion. The channel region may be formed in epitaxial silicon which is not doped after being grown. The drain electrode of the transistor is disposed on a bottom surface of the substrate upon which the transistor structure is formed. When the transistor is turned on, the channel region inverts thereby forming a conductive path from a source region, laterally through the inverted channel region, substantially vertically through a sinker region to the underlying substrate, through the substrate, and to the drain electrode.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: May 12, 1998
    Assignee: Siliconix Incorporated
    Inventors: Fwu-Iuan Hshieh, Mike F. Chang, Jan Van der Linde, Yueh-Se Ho
  • Patent number: 5689128
    Abstract: The cell density of a trenched DMOS transistor is increased by overcoming the problem of lateral diffusion of deep P+body regions. This problem is solved in three versions. In a first version, the deep P+body region is formed using a high energy implant into a single epitaxial layer. In a second version, a double epitaxial layer is used with a somewhat lower but still high energy deep P+body implant. In a third version, there is no deep P+body implant but only the double epitaxial layer is used. The cell density is improved to more than 12 million cells per square inch in each of the three versions.
    Type: Grant
    Filed: August 21, 1995
    Date of Patent: November 18, 1997
    Assignee: Siliconix incorporated
    Inventors: Fwu-Iuan Hshieh, Mike F. Chang, Kuo-In Chen, Richard K. Williams, Mohamed Darwish
  • Patent number: 5639676
    Abstract: A trenched DMOS transistor is fabricated using seven masking steps. One masking step defines both the P+ deep body regions and the active portions of the transistor which are masked using a LOCOS process. A second masking step defines the insulating oxide in the termination region. The insulating (oxide) layer in the termination region is thus thicker than in the active region of the transistor, thereby improving process control and reducing substrate contamination during processing. Additionally, the thicker field oxide in the termination region improves electric field distribution so that avalanche breakdown occurs in the cell (active) region rather than in the termination region, and thus breakdown voltage behavior is more stable and predictable.
    Type: Grant
    Filed: February 16, 1996
    Date of Patent: June 17, 1997
    Assignee: Siliconix incorporated
    Inventors: Fwu-Iuan Hshieh, Mike F. Chang, Yueh-Se Ho, King Owyang