Patents by Inventor Mikhail L. Pekurovsky

Mikhail L. Pekurovsky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230001442
    Abstract: Methods and apparatuses for applying coatings on a moving web are provided. A coating die and a back-up roll engage with each other. The back-up roll includes a shell rotatably supported by a pressurized air layer. When a coating material is dispensed from the coating die onto the web to form a liquid coating, the pressure of the air layer is controlled such that the shell translates in space to balance forces from the air layer and the coating bead, while the web is being translated to drive the shell.
    Type: Application
    Filed: December 22, 2020
    Publication date: January 5, 2023
    Inventors: Tyler J. Rattray, Mikhail L. Pekurovsky, Shawn C. Dodds, Samad Javid, James N. Dobbs, Kara A. Meyers, Ronald P. Swanson, Robert B. Secor
  • Publication number: 20220367325
    Abstract: A pattern of microchannels is formed on a major surface of a substrate on the side opposite an adhesive surface thereof. Through holes extend through the substrate and are connected to the pattern of microchannels. Solid circuit dies are adhesively bonded to the adhesive surface of the substrate. The contact pads of the solid circuit dies at least partially overlie and face the through holes. Electrically conductive channel traces are formed to electrically connect to the solid circuit dies via the through holes.
    Type: Application
    Filed: September 17, 2020
    Publication date: November 17, 2022
    Inventors: Kayla C. Niccum, Ankit Mahajan, Saagar A. Shah, Kara A. Meyers, Mikhail L. Pekurovsky, Jonathan W. Kemling, David C. Mercord, Pranati Mondkar
  • Patent number: 11503720
    Abstract: Flexible devices including conductive traces with enhanced stretchability, and methods of making and using the same are provided. The circuit die is disposed on a flexible substrate. Electrically conductive traces are formed in channels on the flexible substrate to electrically contact with contact pads of the circuit die. A first polymer liquid flows in the channels to cover a free surface of the traces. The circuit die can also be surrounded by a curing product of a second polymer liquid.
    Type: Grant
    Filed: September 12, 2019
    Date of Patent: November 15, 2022
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Saagar Shah, Mikhail L. Pekurovsky, Ankit Mahajan, Lyudmila A. Pekurovsky, Jessica Chiu, Jeremy K. Larsen, Kara A. Meyers, Teresa M. Goeddel, Thomas J. Metzler, Jonathan W. Kemling, Richard J. Pokorny, Benjamin R. Coonce, Chad M. Amb, Thomas P. Klun
  • Publication number: 20220352108
    Abstract: A method comprises: providing a layer of curable adhesive material (4) on a substrate (2); forming a pattern of microstructures (321) on the layer of curable adhesive material (4); curing a first region (42) of the layer of curable adhesive material (4) at a first level and a second region (44) of the layer of curable adhesive material (4) at a second level greater than the first level; providing a solid circuit die (6) to directly attach to a major surface of the first region (42) of the layer of curable adhesive material (4); and further curing the first region (42) of the layer of curable adhesive material (4) to anchor the solid circuit die (6) on the first region (42) by forming an adhesive bond therebetween.
    Type: Application
    Filed: November 30, 2020
    Publication date: November 3, 2022
    Inventors: Teresa M. Goeddel, Ankit Mahajan, Mikhail L. Pekurovsky, Saagar A. Shah, Kara A. Meyers, Christopher G. Walker
  • Patent number: 11465172
    Abstract: Methods and apparatuses for applying coatings on a baggy web are provided. A Mayer rod and a back-up roll engage with each other to form a nip. The back-up roll has a deformable inner layer with a surface thereof covered by a deformable outer layer. The Mayer rod and the flexible web at a contacting area are impressed into the back-up roll with a machine-direction nip width W and a nip engagement depth D, which enables formation of a coating having a substantially uniform thickness.
    Type: Grant
    Filed: November 12, 2018
    Date of Patent: October 11, 2022
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Kara A. Meyers, Shawn C. Dodds, Eric A. Vandre, Tyler J. Rattray, Kevin T. Grove, Brittni M. Schiewer, Mikhail L. Pekurovsky, Samad Javid, James N. Dobbs, Wayne D. Meredyk
  • Patent number: 11413846
    Abstract: Described herein is an article having a microsphere layer comprising a monolayer of microspheres, the monolayer of microspheres comprising a first area substantially free of microspheres and a second area comprising a plurality of randomly-distributed microspheres, wherein the monolayer of microspheres comprises a predetermined pattern, the predetermined pattern comprises at least one of (i) a plurality of the first areas, (ii) a plurality of the second areas, and (iii) combinations thereof; and (b) a bead bonding layer disposed on the microsphere layer, wherein the plurality of microspheres are partially embedded in a first major surface of the bead bonding layer, wherein the article has a retroreflectivity (Ra) of less than 5.0 candelas/lux/square meter. Also disclosed herein are transfer carriers and methods of making the articles and transfer carriers.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: August 16, 2022
    Assignee: 3M Innovative Properties Company
    Inventors: Christopher B. Walker, Jr., Toheeb B. Alabi, Kui Chen-Ho, John C. Clark, Jeremy P. Gundale, Vivek Krishnan, Alexander J. Kugel, Mikhail L. Pekurovsky, Chris A. Pommer, Matthew S. Stay
  • Publication number: 20220250375
    Abstract: A printing system (200) including a printing roll (220) is provided. The printing roll (220) includes an elastically deformable and compressible inner layer (224) and a thin outer shell (222) to cover the inner layer (224). The thin outer shell (222) includes a pattern of raised print features (223) to receive ink material thereon. The inner layer (224) is softer and thicker than the thin outer shell (222), and optionally, the thin outer shell (222) is removable from the inner layer (224). The inner layer (224) of the printing roll (220) has a thickness, a compression force deflection value and an elastically-deformable compressibility such that the raised print features (223) of the printing roll (220) do not slide or deform with respect to the printed web (2) in an amount to generate a substantially visible dot gain.
    Type: Application
    Filed: July 13, 2020
    Publication date: August 11, 2022
    Inventors: Kara A. Meyers, Shawn C. Dodds, Mikhail L. Pekurovsky, Tyler J. Rattray, James N. Dobbs, Samad Javid, Matthew S. Stay
  • Publication number: 20220209436
    Abstract: Flexible electrical connectors are provided to electrically connect electronic devices. The flexible electrical connector includes a removable adhesive tape strip having an adhesive surface thereof and an electrically conductive trace disposed on the adhesive tape strip. The flexible electrical connector engages an electronic device to form an electrical contact where the adhesive tape strip has an adhesive surface removably adhesively bonded to the substrate of the electronic device to at least partially cover the electrical contact.
    Type: Application
    Filed: May 1, 2020
    Publication date: June 30, 2022
    Inventors: Kayla C. Niccum, Ankit Mahajan, Mikhail L. Pekurovsky, Nicholas T. Gabriel, Roger W. Barton, Kara A. Meyers, Saagar A. Shah, Jonathan W. Kemling, Richard C. Webb
  • Publication number: 20220184262
    Abstract: Aspects of the present disclosure relate to a sensor device having an integrated circuit and a monitoring loop coupled to the integrated circuit. The monitoring loop includes a first conductive trace and a second conductive trace, each having a first end electrically coupled to the integrated circuit and a second end. The monitoring loop includes a sterilant-responsive switch electrically coupling the second ends of the first conductive trace and the second conductive trace. The sterilant-responsive switch has a first impedance state and a second impedance state. The sterilant-responsive switch modifies an electrical connection between the first conductive trace and the second conductive trace based on exposure to an adequate environmental condition in an adequate sterilization process. The sensor device also includes an antenna coupled to the integrated circuit forming an antenna loop that is distinct from the monitoring loop.
    Type: Application
    Filed: April 21, 2020
    Publication date: June 16, 2022
    Inventors: Wensheng XIA, Naiyong Jing, Kara A. Meyers, Ankit Mahajan, Benjamin J. Münstermann, Nicholas T. Gabriel, G. Marco Bommarito, Daniel J. Theis, Roger W. Barton, Mikhail L. Pekurovsky
  • Publication number: 20220189790
    Abstract: A method includes placing an electronic device on a pliable mating surface on a major surface of a mold such that at least one contact pad on the electronic device presses against the pliable mating surface. The pliable mating surface is on a microstructure in an arrangement of microstructures on the major surface of the mold. A liquid encapsulant material is applied over the electronic device and the major surface of the mold, and then hardened to form a carrier for the electronic device. The mold and the carrier are separated such that the microstructures on the mold form a corresponding arrangement of microchannels in the carrier, and at least one contact pad on the electronic device is exposed in a microchannel in the arrangement of microchannels. A conductive particle-containing liquid is deposited in the microchannel, which directly contacts the contact pad exposed in the microchannel.
    Type: Application
    Filed: April 14, 2020
    Publication date: June 16, 2022
    Inventors: Ankit Mahajan, Saagar A. Shah, Mikhail L. Pekurovsky, Kayla C. Niccum, Kara A. Meyers, Matthew R.D. Smith, Gino L. Pitera, Graham M. Clarke, Jeremy K. Larsen, Teresa M. Goeddel
  • Publication number: 20220111490
    Abstract: A bonded abrasive wheel is disclosed comprising a plurality of abrasive particles disposed in a binder, a first grinding surface, a second surface opposing the first grinding surface, and an outer circumference. The wheel comprises a rotational axis extending through a central hub and a circuit configured as a Radio Frequency Identification (RFID) unit coupled to the abrasive wheel. The circuit comprises an antenna configured to communicate with one or more external devices and comprising a first end and a second end, wherein antenna has a radius of curvature about an axis along at least a portion thereof such that the first end is disposed adjacent to but is spaced from the second end, and an integrated circuit (IC) operably coupled to the antenna and configured to store at least a first data.
    Type: Application
    Filed: December 17, 2021
    Publication date: April 14, 2022
    Inventors: Joseph B. Eckel, Nicholas T. Gabriel, Ankit Mahajan, Mikhail L. Pekurovsky, Kara A. Meyers, Thomas J. Metzler, Saagar A. Shah
  • Patent number: 11279859
    Abstract: Methods of passivating an adhesive via printing an ink onto a release liner, and adhesive articles or products made by the same are provided. An ink pattern is printed onto a release liner to form a pattern of features. The features are at least partially embedded in an adhesive layer such that when the release liner is peeled from the adhesive layer, the passivation features remain with the layer of adhesive to form selected areas having adjusted adhesive functionality. Articles including the passivated adhesive on a release liner are also disclosed.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: March 22, 2022
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Matthew R. D. Smith, Matthew S. Stay, Mikhail L. Pekurovsky, Daniel J. Theis, Thomas J. Metzler, Shawn C. Dodds
  • Patent number: 11284521
    Abstract: A composite article includes a conductive layer with nanowires on at least a portion of a flexible substrate, wherein the conductive layer has a conductive surface. A patterned layer of a low surface energy material is on a first region of the conductive surface. An overcoat layer free of conductive particulates is on a first portion of a second region of the conductive surface unoccupied by the patterned layer. A via is in a second portion of the second region of the conductive surface between an edge of the patterned layer of the low surface energy material and the overcoat layer. A conductive material is in the via to provide an electrical connection to the conductive surface.
    Type: Grant
    Filed: June 22, 2016
    Date of Patent: March 22, 2022
    Assignee: 3M INNOVATIVE PROPERTIES, COMPANY
    Inventors: Matthew S. Stay, Shawn C. Dodds, Ann M. Gilman, Mikhail L. Pekurovsky, Daniel J. Theis, Matthew R. D. Smith
  • Publication number: 20220078918
    Abstract: A method for manufacturing an electronic device includes providing a substrate with a first major surface having a microchannel, wherein the microchannel has a first end and a second end; dispensing a conductive liquid in the microchannel to cause the conductive liquid to move, primarily by capillary pressure, in a first direction toward the first end of the microchannel and in a second direction toward the second end of the microchannel; and solidifying the conductive liquid to form an electrically conductive trace electrically connecting a first electronic device at the first end of the microchannel to a second electronic device at the second end of the microchannel.
    Type: Application
    Filed: December 30, 2019
    Publication date: March 10, 2022
    Inventors: Ankit Mahajan, Mikhail L. Pekurovsky, Saagar A. Shah, Kayla C. Niccum, Kara A. Meyers, Christopher G. Walker
  • Publication number: 20220048286
    Abstract: Methods, apparatuses and systems for printing an ink pattern on a moving web via die cutting are provided. A die roll including an inked pattern of die blades contacts a substrate to cut or cleave the substrate surface. While the die blades withdraw from the substrate, at least some of the ink transfers from the die blades to the cut substrate to form an ink pattern.
    Type: Application
    Filed: October 16, 2019
    Publication date: February 17, 2022
    Inventors: Thomas J. Metzler, Kara A. Meyers, Saagar A. Shah, Mikhail L. Pekurovsky, Matthew S. Stay, Shawn C. Dodds, Kevin T. Reddy, John T. Strand, Daniel J. Theis, Jeremy O. Swanson, Daniel M. Lentz
  • Publication number: 20220037278
    Abstract: An article includes a solid circuit die on a first major surface of a substrate, wherein the solid circuit die includes an arrangement of contact pads, and wherein at least a portion of the contact pads in the arrangement of contact pads are at least partially exposed on the first major surface of the substrate to provide an arrangement of exposed contact pads; a guide layer including an arrangement of microchannels, wherein the guide layer contacts the first major surface of the substrate such that at least some microchannels in the arrangement of microchannels overlie the at least some exposed contact pads in the arrangement of exposed contact pads; and a conductive particle-containing liquid in at least some of the microchannels. Other articles and methods of manufacturing the articles are described.
    Type: Application
    Filed: December 23, 2019
    Publication date: February 3, 2022
    Inventors: Ankit Mahajan, Saagar A. Shah, Daniel B. Taylor, Mikhail L. Pekurovsky, Kara A. Meyers, Kayla C. Niccum, David J. Rowe, Gino L. Pitera
  • Patent number: 11229987
    Abstract: A bonded abrasive wheel is disclosed comprising a plurality of abrasive particles disposed in a binder, a first grinding surface, a second surface opposing the first grinding surface, and an outer circumference. The wheel comprises a rotational axis extending through a central hub and a circuit configured as a Radio Frequency Identification (RFID) unit coupled to the abrasive wheel. The circuit comprises an antenna configured to communicate with one or more external devices and comprising a first end and a second end, wherein antenna has a radius of curvature about an axis along at least a portion thereof such that the first end is disposed adjacent to but is spaced from the second end, and an integrated circuit (IC) operably coupled to the antenna and configured to store at least a first data.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: January 25, 2022
    Assignee: 3M Innovative Properties Company
    Inventors: Joseph B. Eckel, Nicholas T. Gabriel, Ankit Mahajan, Mikhail L. Pekurovsky, Kara A. Meyers, Thomas J. Metzler, Saagar A. Shah
  • Publication number: 20220016670
    Abstract: Methods and apparatuses for applying coatings (9) on a moving web (3) are provided. A slot die (20) and a back-up roll (11) engage with each other. The back-up roll has a deformable inner layer (12) with a surface thereof covered by a deformable outer layer (14). The slot die and the flexible web at a contacting area are impressed into the back-up roll with an engagement depth D, which enables formation of a coating having a substantially uniform thickness.
    Type: Application
    Filed: December 3, 2019
    Publication date: January 20, 2022
    Inventors: Shawn C. Dodds, Tyler J. Rattray, Kara A. Meyers, Mikhail L. Pekurovsky, Scott L. Ciliske, James N. Dobbs, Samad Javid
  • Publication number: 20210379887
    Abstract: A printing system is provided. The printing system (300) includes a printing roll (310) having a rigid printing pattern (312) on a surface thereof configured to receive an ink material (330); and an inking roll (320) positioned adjacent to the printing roll. The inking roll includes an elastically deformable surface and a number of cells (324) disposed on the elastically deformable surface. A method of printing is also provided. The method includes (a) inking at least a portion of a rigid printing pattern (312) on a surface of a printing roll (310) by contacting the rigid printing pattern with an inking roll (320); and (b) contacting the rigid printing pattern with a substrate (350), transferring the ink material from the rigid printing pattern to a surface of the substrate. Printing systems and methods can achieve higher printing feature resolutions than typically achievable via flexographic printing.
    Type: Application
    Filed: October 14, 2019
    Publication date: December 9, 2021
    Inventors: Matthew R. D. Smith, Shawn C. Dodds, Mikhail L. Pekurovsky, Thomas J. Metzler, Matthew S. Stay, Kara A. Meyers, Samad Javid
  • Publication number: 20210319955
    Abstract: Ultrathin and flexible electrical devices including circuit dies such as, for example, a capacitor chip, a resistor chip, and/or an inductor chip, and methods of making and using the same are provided. Circuit dies are attached to a major surface of a flexible substrate having channels Electrically conductive traces are formed in the channels, self-aligned with the circuit dies, and in direct contact with the bottom surface of the circuit dies.
    Type: Application
    Filed: May 16, 2019
    Publication date: October 14, 2021
    Inventors: Ankit Mahajan, Saagar A. Shah, Mikhail L. Pekurovsky, Thomas J. Metzler, Kayla C. Niccum, Eric A. Vandre, Aniruddha Upadhye, Robert R. Owings, Jeremy K. Larsen, Zohaib Hameed