Patents by Inventor Mikhail L. Pekurovsky

Mikhail L. Pekurovsky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11699865
    Abstract: Flexible electrical connectors are provided to electrically connect electronic devices. The flexible electrical connector includes a removable adhesive tape strip having an adhesive surface thereof and an electrically conductive trace disposed on the adhesive tape strip. The flexible electrical connector engages an electronic device to form an electrical contact where the adhesive tape strip has an adhesive surface removably adhesively bonded to the substrate of the electronic device to at least partially cover the electrical contact.
    Type: Grant
    Filed: May 1, 2020
    Date of Patent: July 11, 2023
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Kayla C. Niccum, Ankit Mahajan, Mikhail L. Pekurovsky, Nicholas T. Gabriel, Roger W. Barton, Kara A. Meyers, Saagar A. Shah, Jonathan W. Kemling, Richard C. Webb
  • Publication number: 20230165723
    Abstract: Various embodiments of an adhesive article and a method of forming such article are disclosed. The adhesive article includes an active pharmaceutical ingredient; a substrate having a first surface and a second surface including a first area and a second area; and a first adhesive layer disposed on the first area of the second surface of the substrate. The active pharmaceutical ingredient is present in the first adhesive layer at a first concentration. The adhesive article also includes a second adhesive layer having a first portion that is in contact with the first adhesive layer and a second portion that is disposed in the second area of the substrate. The active pharmaceutical ingredient is present in the second adhesive layer at a second concentration. The second concentration is less than the first concentration.
    Type: Application
    Filed: April 27, 2021
    Publication date: June 1, 2023
    Applicant: KINDEVA DRUG DELIVERY L.P.
    Inventors: Adam S. Cantor, Daniel H. Carlson, John R. Fenton, John R. Hart, Glen A. Jerry, Gordon P. Knutson, Jonathan J. O'Hare, Mikhail L. Pekurovsky, Timothy A. Peterson, Karl K. Stensvad
  • Publication number: 20230149969
    Abstract: Methods and apparatuses for applying coatings on a moving web are provided. A slot die including a concave die lip coating surface and a back-up roll engage with each other. The back-up roll has a deformable inner layer with a surface thereof covered by a deformable outer layer. The slot die and the flexible web at a contacting area are impressed into the back-up roll with an engagement depth D, which enables formation of a coating having a substantially uniform thickness.
    Type: Application
    Filed: March 16, 2021
    Publication date: May 18, 2023
    Inventors: TYLER J. RATTRAY, STEPHEN J. SHAW, SHAWN C. DODDS, KARA A. MEYERS, SCOTT L. CILISKE, SAMAD JAVID, JAMES N. DOBBS, MIKHAIL L. PEKUROVSKY, ROBERT B. SECOR
  • Publication number: 20230138304
    Abstract: A diagnostic device includes a sensor stack with multiple panels of a porous material disposed in planes parallel to one another and in face-to-face contact with each other. At least a portion of the panels of the porous material include hydrophobic regions and hydrophilic regions configured to provide a sample flow path for migration of a fluid sample through the sensor stack from one panel to another in the hydrophilic regions. A wicking layer is on a major surface of the sensor stack.
    Type: Application
    Filed: March 26, 2021
    Publication date: May 4, 2023
    Inventors: Mikhail L. Pekurovsky, Matthew S. Stay, Henrik B. van Lengerich, Ann M. Gilman, Sonnie L. Hubbard, Hannah J. Loughlin, Satinder K. Nayar, Kevin T. Reddy, Timothy J. Rowell, Matthew R.D. Smith, Ronald P. Swanson, Daniel J. Theis, Deniz Yuksel Yurt
  • Publication number: 20230120911
    Abstract: Diagnostic devices for quantitative or qualitative analysis of a sample fluid including an analyte include at least two portions made from a hydrophilic material. The planar portions are stacked on each other and each occupy a different and substantially parallel plane to form a three-dimensional structure. At least one of the planar portions includes a hydrophobic region formed by applying a low surface energy material that extends through a thickness of the substrate portion from a first major surface to a second major surface thereof. The hydrophilic regions in the overlying substantially parallel substrate portions can be aligned with each other such that a fluid is passively transported between adjacent hydrophilic regions to provide a sample flow path between adjacent substrate portions.
    Type: Application
    Filed: March 16, 2021
    Publication date: April 20, 2023
    Inventors: Mikhail L. Pekurovsky, Matthew S. Stay, Hannah J. Loughlin, Kevin T. Reddy, Henrik B. van Lengerich, Ann M. Gilman, Matthew R.D. Smith
  • Patent number: 11628541
    Abstract: A bonded abrasive wheel is disclosed comprising a plurality of abrasive particles disposed in a binder, a first grinding surface, a second surface opposing the first grinding surface, and an outer circumference. The wheel comprises a rotational axis extending through a central hub and a circuit configured as a Radio Frequency Identification (RFID) unit coupled to the abrasive wheel. The circuit comprises an antenna configured to communicate with one or more external devices and comprising a first end and a second end, wherein antenna has a radius of curvature about an axis along at least a portion thereof such that the first end is disposed adjacent to but is spaced from the second end, and an integrated circuit (IC) operably coupled to the antenna and configured to store at least a first data.
    Type: Grant
    Filed: December 17, 2021
    Date of Patent: April 18, 2023
    Assignee: 3M Innovative Properties Company
    Inventors: Joseph B. Eckel, Nicholas T. Gabriel, Ankit Mahajan, Mikhail L. Pekurovsky, Kara A. Meyers, Thomas J. Metzler, Saagar A. Shah
  • Publication number: 20230057006
    Abstract: Wet-on-wet coating processes are provided to produce multilayer articles. First and second coating materials are sequentially applied on to a structured substrate surface to form a skin layer directly over the structured substrate surface and a bulk layer over the skin layer. The conformability of the skin layer can be adjusted to provide desired surface and bulk properties.
    Type: Application
    Filed: December 24, 2020
    Publication date: February 23, 2023
    Inventors: Brittni M. Schiewer, Eric A. Vandre, Chris A. Pommer, Kara A. Meyers, Anish Kurian, Michelle Ji, Hyacinth L. Lechuga, Ross E. Behling, Dong-Wei Zhu, Robert B. Secor, Mikhail L. Pekurovsky
  • Publication number: 20230049504
    Abstract: A transfer article includes an acrylate layer releasable from a release layer including a metal layer, a metal oxide layer, or a doped semiconductor layer at a release value of from 2 to 50 grams/inch (0.8 to 20 g/cm). A functional layer overlies the acrylate layer, wherein the functional layer includes at least one layer of a functional material selected to provide at least one of a therapeutic, aesthetic or cosmetic benefit on a dental appliance in a mouth of a patient, and wherein the transfer article has a thickness of less than 3 micrometers. A pattern of a transfer material is on a major surface of the functional layer, wherein the transfer material includes an adhesion modifying material chosen from release materials and adhesives.
    Type: Application
    Filed: December 29, 2020
    Publication date: February 16, 2023
    Inventors: Bhaskar V. Velamakanni, Kevin W. Gotrik, Kevin T. Reddy, Scott J. Jones, Matthew S. Stay, Matthew R.D. Smith, Yizhong Wang, Mikhail L. Pekurovsky, Narina Y. Stepanova
  • Publication number: 20230016932
    Abstract: The present disclosure relates to articles and/or constructions with cohesive and to methods of making and using them. Many embodiments provide crush resistance in addition to customizability.
    Type: Application
    Filed: September 16, 2022
    Publication date: January 19, 2023
    Inventors: Manoj Nirmal, Kimberly C.M. Schultz, Jordan C. DuCharme, Mikhail L. Pekurovsky, Ann M. Gilman, Kevin T. Reddy, Elizabeth Bright
  • Publication number: 20230013219
    Abstract: A method for making a dental appliance configured to position at least one tooth of a patient includes printing a hardenable liquid resin composition on a major surface of a polymeric material to form a pattern of discrete unhardened liquid regions thereon; at least partially hardening the unhardened liquid regions to form a corresponding array of structures on the major surface of the polymeric material, wherein the structures have a characteristic cross-sectional dimension of about 25 microns to about 1 mm, and a feature spacing of about 100 microns to about 2000 microns; and forming a plurality of cavities in the polymeric material to form the dental appliance including an arrangement of cavities configured to receive one or more teeth.
    Type: Application
    Filed: December 29, 2020
    Publication date: January 19, 2023
    Inventors: Bhaskar V. Velamakanni, Kevin T. Reddy, Matthew S. Stay, Matthew R.D. Smith, Kevin W. Gotrik, Mikhail L. Pekurovsky, Scott J. Jones, Ta-Hua Yu, Thomas J. Metzler
  • Publication number: 20230001442
    Abstract: Methods and apparatuses for applying coatings on a moving web are provided. A coating die and a back-up roll engage with each other. The back-up roll includes a shell rotatably supported by a pressurized air layer. When a coating material is dispensed from the coating die onto the web to form a liquid coating, the pressure of the air layer is controlled such that the shell translates in space to balance forces from the air layer and the coating bead, while the web is being translated to drive the shell.
    Type: Application
    Filed: December 22, 2020
    Publication date: January 5, 2023
    Inventors: Tyler J. Rattray, Mikhail L. Pekurovsky, Shawn C. Dodds, Samad Javid, James N. Dobbs, Kara A. Meyers, Ronald P. Swanson, Robert B. Secor
  • Publication number: 20220367325
    Abstract: A pattern of microchannels is formed on a major surface of a substrate on the side opposite an adhesive surface thereof. Through holes extend through the substrate and are connected to the pattern of microchannels. Solid circuit dies are adhesively bonded to the adhesive surface of the substrate. The contact pads of the solid circuit dies at least partially overlie and face the through holes. Electrically conductive channel traces are formed to electrically connect to the solid circuit dies via the through holes.
    Type: Application
    Filed: September 17, 2020
    Publication date: November 17, 2022
    Inventors: Kayla C. Niccum, Ankit Mahajan, Saagar A. Shah, Kara A. Meyers, Mikhail L. Pekurovsky, Jonathan W. Kemling, David C. Mercord, Pranati Mondkar
  • Patent number: 11503720
    Abstract: Flexible devices including conductive traces with enhanced stretchability, and methods of making and using the same are provided. The circuit die is disposed on a flexible substrate. Electrically conductive traces are formed in channels on the flexible substrate to electrically contact with contact pads of the circuit die. A first polymer liquid flows in the channels to cover a free surface of the traces. The circuit die can also be surrounded by a curing product of a second polymer liquid.
    Type: Grant
    Filed: September 12, 2019
    Date of Patent: November 15, 2022
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Saagar Shah, Mikhail L. Pekurovsky, Ankit Mahajan, Lyudmila A. Pekurovsky, Jessica Chiu, Jeremy K. Larsen, Kara A. Meyers, Teresa M. Goeddel, Thomas J. Metzler, Jonathan W. Kemling, Richard J. Pokorny, Benjamin R. Coonce, Chad M. Amb, Thomas P. Klun
  • Publication number: 20220352108
    Abstract: A method comprises: providing a layer of curable adhesive material (4) on a substrate (2); forming a pattern of microstructures (321) on the layer of curable adhesive material (4); curing a first region (42) of the layer of curable adhesive material (4) at a first level and a second region (44) of the layer of curable adhesive material (4) at a second level greater than the first level; providing a solid circuit die (6) to directly attach to a major surface of the first region (42) of the layer of curable adhesive material (4); and further curing the first region (42) of the layer of curable adhesive material (4) to anchor the solid circuit die (6) on the first region (42) by forming an adhesive bond therebetween.
    Type: Application
    Filed: November 30, 2020
    Publication date: November 3, 2022
    Inventors: Teresa M. Goeddel, Ankit Mahajan, Mikhail L. Pekurovsky, Saagar A. Shah, Kara A. Meyers, Christopher G. Walker
  • Patent number: 11465172
    Abstract: Methods and apparatuses for applying coatings on a baggy web are provided. A Mayer rod and a back-up roll engage with each other to form a nip. The back-up roll has a deformable inner layer with a surface thereof covered by a deformable outer layer. The Mayer rod and the flexible web at a contacting area are impressed into the back-up roll with a machine-direction nip width W and a nip engagement depth D, which enables formation of a coating having a substantially uniform thickness.
    Type: Grant
    Filed: November 12, 2018
    Date of Patent: October 11, 2022
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Kara A. Meyers, Shawn C. Dodds, Eric A. Vandre, Tyler J. Rattray, Kevin T. Grove, Brittni M. Schiewer, Mikhail L. Pekurovsky, Samad Javid, James N. Dobbs, Wayne D. Meredyk
  • Patent number: 11413846
    Abstract: Described herein is an article having a microsphere layer comprising a monolayer of microspheres, the monolayer of microspheres comprising a first area substantially free of microspheres and a second area comprising a plurality of randomly-distributed microspheres, wherein the monolayer of microspheres comprises a predetermined pattern, the predetermined pattern comprises at least one of (i) a plurality of the first areas, (ii) a plurality of the second areas, and (iii) combinations thereof; and (b) a bead bonding layer disposed on the microsphere layer, wherein the plurality of microspheres are partially embedded in a first major surface of the bead bonding layer, wherein the article has a retroreflectivity (Ra) of less than 5.0 candelas/lux/square meter. Also disclosed herein are transfer carriers and methods of making the articles and transfer carriers.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: August 16, 2022
    Assignee: 3M Innovative Properties Company
    Inventors: Christopher B. Walker, Jr., Toheeb B. Alabi, Kui Chen-Ho, John C. Clark, Jeremy P. Gundale, Vivek Krishnan, Alexander J. Kugel, Mikhail L. Pekurovsky, Chris A. Pommer, Matthew S. Stay
  • Publication number: 20220250375
    Abstract: A printing system (200) including a printing roll (220) is provided. The printing roll (220) includes an elastically deformable and compressible inner layer (224) and a thin outer shell (222) to cover the inner layer (224). The thin outer shell (222) includes a pattern of raised print features (223) to receive ink material thereon. The inner layer (224) is softer and thicker than the thin outer shell (222), and optionally, the thin outer shell (222) is removable from the inner layer (224). The inner layer (224) of the printing roll (220) has a thickness, a compression force deflection value and an elastically-deformable compressibility such that the raised print features (223) of the printing roll (220) do not slide or deform with respect to the printed web (2) in an amount to generate a substantially visible dot gain.
    Type: Application
    Filed: July 13, 2020
    Publication date: August 11, 2022
    Inventors: Kara A. Meyers, Shawn C. Dodds, Mikhail L. Pekurovsky, Tyler J. Rattray, James N. Dobbs, Samad Javid, Matthew S. Stay
  • Publication number: 20220209436
    Abstract: Flexible electrical connectors are provided to electrically connect electronic devices. The flexible electrical connector includes a removable adhesive tape strip having an adhesive surface thereof and an electrically conductive trace disposed on the adhesive tape strip. The flexible electrical connector engages an electronic device to form an electrical contact where the adhesive tape strip has an adhesive surface removably adhesively bonded to the substrate of the electronic device to at least partially cover the electrical contact.
    Type: Application
    Filed: May 1, 2020
    Publication date: June 30, 2022
    Inventors: Kayla C. Niccum, Ankit Mahajan, Mikhail L. Pekurovsky, Nicholas T. Gabriel, Roger W. Barton, Kara A. Meyers, Saagar A. Shah, Jonathan W. Kemling, Richard C. Webb
  • Publication number: 20220184262
    Abstract: Aspects of the present disclosure relate to a sensor device having an integrated circuit and a monitoring loop coupled to the integrated circuit. The monitoring loop includes a first conductive trace and a second conductive trace, each having a first end electrically coupled to the integrated circuit and a second end. The monitoring loop includes a sterilant-responsive switch electrically coupling the second ends of the first conductive trace and the second conductive trace. The sterilant-responsive switch has a first impedance state and a second impedance state. The sterilant-responsive switch modifies an electrical connection between the first conductive trace and the second conductive trace based on exposure to an adequate environmental condition in an adequate sterilization process. The sensor device also includes an antenna coupled to the integrated circuit forming an antenna loop that is distinct from the monitoring loop.
    Type: Application
    Filed: April 21, 2020
    Publication date: June 16, 2022
    Inventors: Wensheng XIA, Naiyong Jing, Kara A. Meyers, Ankit Mahajan, Benjamin J. Münstermann, Nicholas T. Gabriel, G. Marco Bommarito, Daniel J. Theis, Roger W. Barton, Mikhail L. Pekurovsky
  • Publication number: 20220189790
    Abstract: A method includes placing an electronic device on a pliable mating surface on a major surface of a mold such that at least one contact pad on the electronic device presses against the pliable mating surface. The pliable mating surface is on a microstructure in an arrangement of microstructures on the major surface of the mold. A liquid encapsulant material is applied over the electronic device and the major surface of the mold, and then hardened to form a carrier for the electronic device. The mold and the carrier are separated such that the microstructures on the mold form a corresponding arrangement of microchannels in the carrier, and at least one contact pad on the electronic device is exposed in a microchannel in the arrangement of microchannels. A conductive particle-containing liquid is deposited in the microchannel, which directly contacts the contact pad exposed in the microchannel.
    Type: Application
    Filed: April 14, 2020
    Publication date: June 16, 2022
    Inventors: Ankit Mahajan, Saagar A. Shah, Mikhail L. Pekurovsky, Kayla C. Niccum, Kara A. Meyers, Matthew R.D. Smith, Gino L. Pitera, Graham M. Clarke, Jeremy K. Larsen, Teresa M. Goeddel