Patents by Inventor Mikhail L. Pekurovsky

Mikhail L. Pekurovsky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10288254
    Abstract: This application describes a front-lit reflective display assembly including a reflective display and an illumination article for front-lighting the display when the article is optically coupled to a light source. The illumination article includes a variable index light extraction layer optically coupled to a lightguide. The variable index light extraction layer has first and second regions, the first region comprising nanovoided polymeric material, the second region comprising the nanovoided polymeric material and an additional material, the first and second regions being disposed such that for light being transported at a supercritical angle in the lightguide, the variable index light extraction layer selectively extracts the light in a predetermined way based on the geometric arrangement of the first and second regions. Front-lit reflective display devices including the front-lit reflective display assembly optically coupled to a light source are also described.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: May 14, 2019
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Kevin R. Schaffer, David Scott Thompson, Zhaohui Yang, Encai Hao, Audrey A. Sherman, Michael A. Meis, William J. Bryan, John A. Wheatley, Joseph W. Woody, Steven D. Solomonson, Matthew S. Stay, Mikhail L. Pekurovsky
  • Patent number: 10254786
    Abstract: A method of patterning a conductive layer to form transparent electrical conductors that does not require etching is disclosed. The method includes peeling a strippable polymer layer from a substrate coated with the conductive layer to pattern the conductive layer. In some embodiments, a resist matrix material is patterned over the conductive layer to prevent removal of the conductive layer beneath the resist matrix material. In other embodiments, a liner having a pressure sensitive adhesive surface is brought into contact with the patterned strippable polymer material to remove both the patterned strippable polymer material and the conductive layer beneath it.
    Type: Grant
    Filed: December 2, 2013
    Date of Patent: April 9, 2019
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Shawn C. Dodds, Matthew S. Stay, Mikhail L. Pekurovsky, Matthew H. Frey, Mark J. Pellerite, John P. Baetzold
  • Patent number: 10195884
    Abstract: A method includes unwinding a web material from a support and providing an elastomeric stamp, wherein the stamp includes a base surface and an arrangement of pattern elements extending away from the base surface, and wherein each pattern element has a stamping surface with a lateral dimension of less than about 5 microns and a height with respect to the base surface, and wherein an aspect ratio of the height to the lateral dimension is at least 1.5. The stamping surfaces of the pattern elements are inked with an ink composition including a functionalizing molecule, wherein the functionalizing molecule includes a functional group selected to bind to said substrate material.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: February 5, 2019
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Mikhail L. Pekurovsky, Lyudmila A. Pekurovsky, Matthew H. Frey, Daniel P. Meehan, Jonathan J. O'Hare
  • Patent number: 10139550
    Abstract: Variable index light extraction layers that contain a first region with a first material and a second region including a second material are described, where the first region has a lower effective index of refraction than the second region. Optical films and stacks may use the variable index light extraction layers in front lit or back lit display devices and luminaires.
    Type: Grant
    Filed: August 21, 2013
    Date of Patent: November 27, 2018
    Assignee: 3M Innovative Properties Company
    Inventors: David Scott Thompson, Shawn C. Dodds, Mikhail L. Pekurovsky, Kevin R. Schaffer, Matthew S. Stay, Steven D. Solomonson, John A. Wheatley, Zhaohui Yang, Joseph W. Woody, V
  • Patent number: 10081174
    Abstract: A system, including a moving web of material unwound from a support and a stamp mounted on a roller, wherein the stamp includes a base surface and a continuous, regular array of pattern elements having a trapezoidal cross-sectional shape and extending above the base surface, and wherein the stamping elements each have a substantially planar stamping surface. An inking roller with an inking surface at least periodicially contacts the stamping surface of the stamping elements. The inking surface is impregnated with an ink composition including an organosulfur compound having a thiol functional group selected to bind to a major surface of the web material to form a self-assembled monolayer (SAM) thereon according to the array of pattern elements on the stamping surface.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: September 25, 2018
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Tyler J. Rattray, Mikhail L. Pekurovsky, Lyudmila A. Pekurovsky, Matthew H. Frey, Daniel P. Meehan, Jonathan J. O'Hare, Richard W. Greger
  • Publication number: 20180253166
    Abstract: A composite article having a conductive layer on at least a portion of a flexible substrate. Electrical connectivity between various portions of the substrate can be obtained through this conductive layer. The conductive layer comprises a conductive surface, and there is a patterned layer on at least a portion of a first region of the conductive surface. The patterned layer comprises a conductive material having a surface roughness, and is in electrical contact with the conductive surface. An overcoat layer is present on at least a portion of the first region, such that the overcoat layer has a thickness less than the surface roughness, such that the conductive layer within the first region is covered by the overcoat layer, and such that at least a portion of the patterned layer substantially protrudes above the overcoat layer.
    Type: Application
    Filed: September 12, 2016
    Publication date: September 6, 2018
    Inventors: Matthew S. Stay, Shawn C. Dodds, Luke A. Schroeder, Joan M. Noyola, Nicholas D. Petkovich, Matthew H. Frey, Craig R. Schardt, Mikhail L. Pekurovsky, Ann M. Gilman
  • Publication number: 20180236481
    Abstract: A process for applying a coating material onto a substrate as a non-uniform patterned layer of coating material, the method including providing a first distribution manifold having a cavity and a first multiplicity of dispensing outlets in fluid communication with the cavity, providing a second distribution manifold having a cavity and a second multiplicity of dispensing outlets in fluid communication with the cavity, creating relative motion between a substrate and the dispensing outlets in a first direction, dispensing a first coating material from the first dispensing outlets while maintaining the relative motion and simultaneously translating the plurality of dispensing outlets in a second direction non-parallel to the first direction, and dispensing a second coating material from the second dispensing outlets while maintaining the relative motion and simultaneously translating the plurality of dispensing outlets in a second direction non-parallel to the first direction.
    Type: Application
    Filed: August 24, 2016
    Publication date: August 23, 2018
    Inventors: Jonathan J. O'Hare, Tyler J. Rattray, Mikhail L. Pekurovsky, Peter T. Benson, Ann M. Gilman
  • Publication number: 20180203168
    Abstract: The present disclosure relates to micro-optical assemblies containing at least one optical element adhered to a receptor substrate, e.g. a transparent receptor substrate, the receptor substrate contains at least one graphics layer. The micro-optical assemblies include both functional micro-optical structures that can alter, for example, incident light, and a graphic layer, which includes at least one graphic, e.g. a graphic design, which may include color, patterns, imagery, indicia and the like. The combination of the micro-optical elements with the graphic of the graphics layer can provide unique light altering assemblies that have graphic designs that may be functional, e.g. to display a message, and/or have aesthetic value. The micro-optical assemblies of the present disclosure are useful in a variety of applications which include, but are not limited to, display and graphics applications and architectural glass applications.
    Type: Application
    Filed: June 14, 2016
    Publication date: July 19, 2018
    Inventors: Martin B. Wolk, Thomas J. Metzler, Samuel J. Carpenter, Denis Terzic, Mitchell T. Nommensen, Suman K. Patel, Mikhail L. Pekurovsky, Donald G. Peterson, Terry O. Collier
  • Publication number: 20180188424
    Abstract: The disclosed light directing article comprises a structured layer, an adhesive sealing layer, and barrier elements. The structured layer comprises multiple microstructured elements that are opposite a major surface. The adhesive sealing layer has a first region and a second region. The second region is in contact with the structured layer. The barrier element are at the first region. The first region with the barrier element and second region have sufficiently different properties to form a low refractive index layer between the adhesive sealing layer and the structured layer. The barrier element comprises a crosslinked polymeric matrix having a modulus of elasticity less than 4.4 GPa.
    Type: Application
    Filed: June 29, 2016
    Publication date: July 5, 2018
    Inventors: Suman K. Patel, John P. Baetzold, Erik A. Aho, Manoj Nirmal, Mikhail L. Pekurovsky, Scott M. Tapio, Denis Terzic
  • Publication number: 20180180779
    Abstract: This disclosure generally relates to retroreflective articles and methods of making such articles.
    Type: Application
    Filed: February 2, 2018
    Publication date: June 28, 2018
    Inventors: Michael Benton Free, Bimal V. Thakkar, Mieczyslaw H. Mazurek, Kenneth L. Smith, Suman K. Patel, William D. Coggio, Mikhail L. Pekurovsky
  • Publication number: 20180169996
    Abstract: The present disclosure relates to transfer tapes, segmented and non-segmented which include at least one graphics layer. The transfer tapes include a removable template layer, a transfer layer which includes a backfill layer, having at least one first graphics layer, and an adhesive layer. Segmented transfer tapes further at least one transferable segment, at least one non-transferable segment in the segmented transfer tape and include at least one kerf. The present disclosure also provides optical assemblies, e.g. micro-optical assemblies, which may be fabricated from the transfer tapes which include at least one graphics layer. The present disclosure also provides methods of forming the transfer tapes and methods of making the micro optical assemblies.
    Type: Application
    Filed: June 13, 2016
    Publication date: June 21, 2018
    Inventors: Martin B. Wolk, Thomas J. Metzler, Samuel J. Carpenter, Denis Terzic, Mitchell T. Nommensen, Suman K. Patel, Mikhail L. Pekurovsky, Donald G. Peterson, Terry O. Collier
  • Publication number: 20180155578
    Abstract: The present disclosure relates to segmented transfer tapes useful in the transfer of only a portion of the segments of the transfer tapes and methods of making thereof. The segmented transfer tapes include a removable template layer having a structured surface; a transfer layer comprising a backfill layer, wherein the backfill layer has a structured first major surface, and an adhesive layer; at least one transferable segment formed in the transfer layer; at least one non-transferable segment formed in the transfer layer, the at least one non-transferable segment includes an adhesive surface, wherein a passivating layer is disposed on at least a portion of the adhesive surface of the at least one non-transferrable segment; and at least one kerf extending from the first major surface of the adhesive layer and into at least a portion of the removable template layer. The present disclosure also provides micro-optical assemblies and methods of making micro-optical assemblies from the segmented transfer tapes.
    Type: Application
    Filed: June 13, 2016
    Publication date: June 7, 2018
    Inventors: Martin B. Wolk, Thomas J. Metzler, Samuel J. Carpenter, Denis Terzic, Mitchell T. Nommensen, Suman K. Patel, Mikhail L. Pekurovsky, Donald G. Peterson
  • Publication number: 20180160548
    Abstract: A composite article includes a conductive layer on at least a portion of a flexible substrate, wherein the conductive layer has a conductive surface. A patterned layer of a low surface energy material is on a first region of the conductive surface. An overcoat layer free of conductive particulates is on a first portion of a second region of the conductive surface unoccupied by the patterned layer. A via is in a second portion of the second region of the conductive surface between an edge of the patterned layer of the low surface energy material and the overcoat layer. A conductive material is in the via to provide an electrical connection to the conductive surface.
    Type: Application
    Filed: June 23, 2016
    Publication date: June 7, 2018
    Inventors: Matthew S. Stay, Shawn C. Dodds, Ann M. Gilman, Mikhail L. Pekurovsky, Daniel J. Theis, Matthew R. D. Smith
  • Patent number: 9980394
    Abstract: A method for making an electronic assembly includes applying a conductive adhesive to a resist layer overlying a patterned conductive nanowire layer on a substrate and engaging an electrical contact of an electronic component with the conductive adhesive to provide an electrical connection between the electronic component and the conductive nanowire layer.
    Type: Grant
    Filed: July 18, 2014
    Date of Patent: May 22, 2018
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Matthew S. Stay, Mikhail L. Pekurovsky, Shawn C. Dodds, Ann M. Gilman, Daniel J. Theis
  • Publication number: 20180133742
    Abstract: Methods and apparatuses for applying liquid coatings are provided. A first roll (14), a second roll (16), and a nip (146) formed between the first and second rolls are provided. A coating liquid (22) is supplied to the nip. The coating liquid is smoothed, via the nip, into a substantially uniform layer (22a) of liquid coating which is transferred to a substrate (12). The second roll (16) includes a thin metal shell (40) and a resilient layer (30), the thin metal shell encases the resilient layer therebeneath, and the thin metal shell is capable of deflecting in unison with the resilient layer such that the thin metal shell is elastically deformable at the nip when in contact with the first roll (14).
    Type: Application
    Filed: June 8, 2016
    Publication date: May 17, 2018
    Inventors: Shawn C. Dodds, Mikhail L. Pekurovsky, James N. Dobbs, Graham M. Clarke, Michele A. Craton, Adam W. Kiefer, Matthew R.D. Smith, Brian E. Schreiber
  • Publication number: 20180139855
    Abstract: A composite article includes a conductive layer with nanowires on at least a portion of a flexible substrate, wherein the conductive layer has a conductive surface. A patterned layer of a low surface energy material is on a first region of the conductive surface. An overcoat layer free of conductive particulates is on a first portion of a second region of the conductive surface unoccupied by the patterned layer. A via is in a second portion of the second region of the conductive surface between an edge of the patterned layer of the low surface energy material and the overcoat layer. A conductive material is in the via to provide an electrical connection to the conductive surface.
    Type: Application
    Filed: June 22, 2016
    Publication date: May 17, 2018
    Inventors: Matthew S. Stay, Shawn C. Dodds, Ann M. Gilman, Mikhail L. Pekurovsky, Daniel J. Theis, Matthew R. D. Smith
  • Patent number: 9964674
    Abstract: The present disclosure relates to prismatic retroreflective articles that includes a security mark and to methods of making such articles.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: May 8, 2018
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Suman K. Patel, Bruce D. Orensteen, Mikhail L. Pekurovsky
  • Publication number: 20180095198
    Abstract: The present disclosure relates to prismatic retroreflective articles that includes a security mark and to methods of making such articles.
    Type: Application
    Filed: November 17, 2017
    Publication date: April 5, 2018
    Inventors: Suman K. Patel, Bruce D. Orensteen, Mikhail L. Pekurovsky
  • Patent number: 9910194
    Abstract: This disclosure generally relates to retroreflective articles and methods of making such articles.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: March 6, 2018
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Michael Benton Free, Bimal V. Thakkar, Mieczyslaw H. Mazurek, Kenneth L. Smith, Suman K. Patel, William D. Coggio, Mikhail L. Pekurovsky
  • Patent number: 9873276
    Abstract: A method includes providing an elastomeric stamp including a stamping surface with a first pattern element having a fill factor of 20 to 99 percent and including a continuous region and at least one discontinuous region, the discontinuous region including at least one of: (1) one or more elongated concavities, and (2) one or more interior voids. A second pattern element of the stamping surface has a fill factor of 0.25 to 10 percent, and includes traces with a width from 0.1 micrometers to 50 micrometers. The stamping surface is inked with an ink composition including a functionalizing molecule with a functional group selected to bind to a surface of the ink-receptive material. The inked stamping surface is contacted with an ink-receptive material selected from a sheet or a web for a contact time sufficient to bind the functional group with the surface of the ink-receptive material to form a self-assembled monolayer (SAM) of the functionalizing material.
    Type: Grant
    Filed: October 30, 2014
    Date of Patent: January 23, 2018
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Catherine P. Tarnowski, David A. Johnson, Roger W. Barton, Larry L. Johnson, Jonathan J. O'Hare, Tyler J. Rattray, Daniel M. Lentz, Jeffrey H. Tokie, Matthew H. Frey, Mikhail L. Pekurovsky