Patents by Inventor Min Cheng

Min Cheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220079463
    Abstract: A physiological status evaluation method and a physiological status evaluation apparatus are provided. The method includes the following: obtaining original electrocardiogram data of a user by an electrocardiogram detection apparatus; converting the original electrocardiogram data into digital integration data; obtaining a plurality of physiological characteristic parameters according to the digital integration data; filtering the physiological characteristic parameters for at least one notable characteristic parameter through at least one filter model, where decision importance of the at least one notable characteristic parameter in a decision process of the at least one filter model is greater than a threshold; building a prediction model according to the at least one notable characteristic parameter; and evaluating a physiological status of the user through the prediction model.
    Type: Application
    Filed: October 29, 2020
    Publication date: March 17, 2022
    Applicants: Acer Incorporated, Taipei Veterans General Hospital, Acer Healthcare Inc.
    Inventors: Chun-Hsien Li, Tsung-Hsien Tsai, Jun-Hong Chen, Wei-Ting Wang, Yin-Hao Lee, Hao-Min Cheng
  • Publication number: 20220084635
    Abstract: The disclosure provides a disease classification method and a disease classification device. The disease classification method includes: inputting samples into a first stage model and obtaining a first stage determination result; inputting first samples determined positive by the first stage model into a second stage high specificity model to obtain second samples determined to be positive and third samples determined to be negative and rule in the second samples; inputting fourth samples determined negative by the first stage model into a second stage high sensitivity model to obtain fifth samples determined to be positive and sixth samples determined to be negative and rule out the sixth samples; obtaining a second stage determination result of the second and sixth samples; and inputting the third and fifth samples not ruled in or ruled out into a third stage model and obtaining a third stage determination result of the third and fifth samples.
    Type: Application
    Filed: October 29, 2020
    Publication date: March 17, 2022
    Applicants: Acer Incorporated, Acer Healthcare Inc., Taipei Veterans General Hospital
    Inventors: Jun-Hong Chen, Tsung-Hsien Tsai, Chun-Hsien Li, Wei-Ting Wang, Yin-Hao Lee, Hao-Min Cheng
  • Patent number: 11269261
    Abstract: A system includes a frame, a projection lens, a wafer table, and a cleaner. The frame has an opening vertically extending through the frame. The projection lens is disposed on the frame. The wafer table is below the frame, in which the wafer table is movable along a horizontal direction. The cleaner is over the frame, in which the cleaner comprises a sticky structure movable along a vertical direction and through the opening of the frame.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: March 8, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Min-Cheng Wu, Chi-Hung Liao
  • Patent number: 11251187
    Abstract: A method for fabricating buried word line of a dynamic random access memory (DRAM) includes the steps of: forming a trench in a substrate; forming a first conductive layer in the trench; forming a second conductive layer on the first conductive layer, in which the second conductive layer above the substrate and the second conductive layer below the substrate comprise different thickness; and forming a third conductive layer on the second conductive layer to fill the trench.
    Type: Grant
    Filed: September 22, 2017
    Date of Patent: February 15, 2022
    Assignees: UNITED MICROELECTRONICS CORP., Fujian Jinhua Integrated Circuit Co., Ltd.
    Inventors: Pin-Hong Chen, Yi-Wei Chen, Tzu-Chieh Chen, Chih-Chieh Tsai, Chia-Chen Wu, Kai-Jiun Chang, Yi-An Huang, Tsun-Min Cheng
  • Publication number: 20220042110
    Abstract: Described herein are methods and kits for detecting the presence or absence of gene dysregulations such as those arising from gene fusions and/or chromosomal abnormalities, e.g. translocations, insertions, inversions and deletions. The methods, compositions and kits are useful for detecting mutations that cause the differential expression of a 5? portion of a target gene relative to the 3? region of the target gene. The average expression of the 5? portion of the target gene is compared with the average expression of the 3? portion of the target gene to determine an intragenic differential expression (IDE). The IDE can then be used to determine if a dysregulation or a particular disease (or susceptibility to a disease) is present or absent in a subject or sample.
    Type: Application
    Filed: August 16, 2021
    Publication date: February 10, 2022
    Applicant: Quest Diagnostics Investments LLC
    Inventor: Shih-Min CHENG
  • Patent number: 11239241
    Abstract: A fabricating method of a semiconductive element includes providing a substrate, wherein an amorphous silicon layer covers the substrate. Then, a titanium nitride layer is provided to cover and contact the amorphous silicon layer. Later, a titanium layer is formed to cover the titanium nitride layer. Finally, a thermal process is performed to transform the titanium nitride layer into a nitrogen-containing titanium silicide layer.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: February 1, 2022
    Assignees: UNITED MICROELECTRONICS CORP., Fujian Jinhua Integrated Circuit Co., Ltd.
    Inventors: Pin-Hong Chen, Yi-Wei Chen, Chih-Chieh Tsai, Tzu-Chieh Chen, Tsun-Min Cheng, Chi-Mao Hsu
  • Patent number: 11239243
    Abstract: A method of manufacturing a semiconductor device for preventing row hammering issue in DRAM cell, including the steps of providing a substrate, forming a trench in the substrate, forming a gate dielectric conformally on the trench, forming an n-type work function metal layer conformally on the substrate and the gate dielectric, forming a titanium nitride layer conformally on the n-type work function metal layer, and filling a buried word line in the trench.
    Type: Grant
    Filed: May 5, 2020
    Date of Patent: February 1, 2022
    Assignees: UNITED MICROELECTRONICS CORP., Fujian Jinhua Integrated Circuit Co., Ltd.
    Inventors: Chih-Chieh Tsai, Pin-Hong Chen, Tzu-Chieh Chen, Tsun-Min Cheng, Yi-Wei Chen, Hsin-Fu Huang, Chi-Mao Hsu, Shih-Fang Tzou
  • Patent number: 11232545
    Abstract: The present disclosure relates to systems and methods for image sharpening. The systems and methods may obtain a target image to be processed, the target image including one or more target pixels to be processed. For each of the one or more target pixels, the systems and methods may select one or more previous pixels and one or more subsequent pixels along a predetermined direction in the target image; determine a first gray value based on the one or more previous pixels and a second gray value based on the one or more subsequent pixels; select a target gray value from the first gray value and the second gray value based on an initial gray value of the target pixel; and determine an adjusted gray value of the target pixel based on the initial gray value and the target gray value.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: January 25, 2022
    Assignee: ZHEJIANG DAHLIA TECHNOLOGY CO., LTD.
    Inventors: Min Cheng, Keqiang Yu
  • Patent number: 11222784
    Abstract: A semiconductor device includes a gate structure on a substrate, in which the gate structure includes a silicon layer on the substrate, a titanium nitride (TiN) layer on the silicon layer, a titanium (Ti) layer between the TiN layer and the silicon layer, a metal silicide between the Ti layer and the silicon layer, a titanium silicon nitride (TiSiN) layer on the TiN layer, and a conductive layer on the TiSiN layer.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: January 11, 2022
    Assignees: UNITED MICROELECTRONICS CORP., Fujian Jinhua Integrated Circuit Co., Ltd.
    Inventors: Tzu-Hao Liu, Yi-Wei Chen, Tsun-Min Cheng, Kai-Jiun Chang, Chia-Chen Wu, Yi-An Huang, Po-Chih Wu, Pin-Hong Chen, Chun-Chieh Chiu, Tzu-Chieh Chen, Chih-Chien Liu, Chih-Chieh Tsai, Ji-Min Lin
  • Patent number: 11217475
    Abstract: A method for semiconductor fabrication includes mounting a wafer onto a first wafer table. The first wafer table includes a first set of pins that support the wafer, the first set of pins having a first pitch between adjacent pins. The method further includes forming a first set of overlay marks on the wafer; and transferring the wafer onto a second wafer table. The second wafer table includes a second set of pins having a second pitch between adjacent pins. The second set of pins are individually and vertically movable, and the second pitch is smaller than the first pitch. The method further includes moving a portion of the second set of pins such that a remaining portion of the second set of pins supports the wafer and the remaining portion has the first pitch between adjacent pins.
    Type: Grant
    Filed: May 11, 2020
    Date of Patent: January 4, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chi-Hung Liao, Min-Cheng Wu
  • Publication number: 20210403797
    Abstract: The invention is directed to polymers that self-crosslink at acidic pH or can be crosslinked by phenolic agents in brine. Such polymers have lower viscosity and can be pumped deep into reservoirs, where they will cross link in situ, thus increasing their viscosity and/or form a gel and blocking thief zones. Methods of making and using such polymers are also provided.
    Type: Application
    Filed: September 12, 2021
    Publication date: December 30, 2021
    Inventors: Huili GUAN, Cory BERKLAND, Ahmad MORADI-ARAGHI, Jenn-Tai LIANG, Terry M. CHRISTIAN, Riley B. NEEDHAM, James H. HEDGES, Min CHENG, Faye L. SCULLY
  • Patent number: 11209741
    Abstract: Fluorescent green toners are provided. In embodiments, a fluorescent green toner comprises fluorescent agent-incorporated resin particles comprising a resin, a fluorescence brightener, and a yellow fluorescent agent having an absorption spectrum that overlaps with a fluorescence emission spectrum of the fluorescence brightener; and a cyan colorant; blue dye-incorporated resin particles comprising the resin and a blue dye; or both. The fluorescent green toner has a weight ratio of the yellow fluorescent agent to the cyan colorant and, if present, the blue dye, in a range of from 100:1 to 0.2:1, and the fluorescent green toner exhibits Förster Resonance Energy Transfer (FRET) under illumination with UV light. Methods of making and using the fluorescent green toners are also provided.
    Type: Grant
    Filed: March 18, 2020
    Date of Patent: December 28, 2021
    Assignee: Xerox Corporation
    Inventors: Chunliang Lu, Yu Qi, Peter V. Nguyen, Eliud Robles-Flores, Chieh-Min Cheng
  • Publication number: 20210388255
    Abstract: The disclosure is directed to polyelectrolyte complex nanoparticles that can be used to deliver agents deep into hydrocarbon reservoirs. Methods of making and using said polyelectrolyte complex nanoparticles are also provided.
    Type: Application
    Filed: August 25, 2021
    Publication date: December 16, 2021
    Inventors: Ying-Ying LIN, Cory BERKLAND, Jenn-Tai LIANG, Ahmad MORADI-ARAGHI, Terry M. CHRISTIAN, Riley B. NEEDHAM, James H. HEDGES, Min CHENG, Faye L. SCULLY, David R. ZORNES
  • Patent number: 11199786
    Abstract: Methods of making a fluorescent white toner are provided. In embodiments, such a method comprises forming one or more fluorescent latexes which comprise a fluorescent agent, a first type of amorphous resin, and a second type of amorphous resin, wherein the first and second types of amorphous resins are present at a ratio in a range of from 2:3 to 3:2; forming a mixture comprising the one or more fluorescent latexes; a dispersion comprising a white colorant and a surfactant; one or more emulsions which comprise a crystalline resin, the first type of amorphous resin, the second type of amorphous resin; and optionally, a wax dispersion; aggregating the mixture to form particles of a predetermined size; forming a shell over the particles of the predetermined size to form core-shell particles; and coalescing the core-shell particles to form a fluorescent white toner. The fluorescent white toners and methods of using such toners are also provided.
    Type: Grant
    Filed: March 18, 2020
    Date of Patent: December 14, 2021
    Assignee: Xerox Corporation
    Inventors: Yu Qi, Judith Vandewinckel, Shigeng Li, Chunliang Lu, Chieh-Min Cheng
  • Publication number: 20210384799
    Abstract: An electronic device is provided. The electronic device includes a function module, a body, and a motor assembly. The body includes an accommodation space for accommodating the function module. The motor assembly includes a drive motor, a gear, a rotation output shaft, a displacement mechanism, and a latch. The drive motor includes a shaft. The gear is fixedly attached to the shaft. The rotation output shaft includes a gear teeth portion. The gear teeth portion is coupled to the gear. The rotation output shaft is connected to the function module and is configured to drive the function module to rotate. The displacement mechanism synchronizes with the shaft and is separated from the rotation output shaft. The displacement mechanism includes a linear motion component. The latch is connected to the linear motion component, and is configured to engage the function module.
    Type: Application
    Filed: June 3, 2021
    Publication date: December 9, 2021
    Inventors: Chui-Hung CHEN, Ching-Yuan YANG, Chia-Min CHENG, Cheng-Han CHUNG
  • Patent number: 11186765
    Abstract: The disclosure is directed to polyelectrolyte complex nanoparticles that can be used to deliver agents deep into hydrocarbon reservoirs. Methods of making and using said polyelectrolyte complex nanoparticles are also provided.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: November 30, 2021
    Assignees: CONOCOPHILLIPS COMPANY, UNIVERSITY OF KANSAS
    Inventors: Ying-Ying Lin, Cory Berkland, Jenn-Tai Liang, Ahmad Moradi-Araghi, Terry M. Christian, Riley B. Needham, James H. Hedges, Min Cheng, Faye L. Scully, David R. Zornes
  • Publication number: 20210360096
    Abstract: An electronic device is provided in this disclosure. The electronic device includes a body, a shaft sleeve, a function module, and a rotating resistance device. The shaft sleeve is fixed to the body. The function module includes a shaft portion rotatably disposed on the shaft sleeve. The rotating resistance device is disposed on the shaft sleeve or fixed to the body and is against the shaft portion of the flip function module to apply rotational resistance to the shaft portion of the function module, so that the function module stably stays at any position without being affected by an external force.
    Type: Application
    Filed: May 10, 2021
    Publication date: November 18, 2021
    Inventors: Cheng-Han CHUNG, Ching-Yuan YANG, Chia-Min CHENG, Chui-Hung CHEN
  • Patent number: 11169461
    Abstract: According to various embodiments, there is provided a toner composition and a developer. The toner composition includes toner particles including a resin, a colorant, a charge control agent, and a surface additive applied to a surface of the toner particles. The surface additive includes strontium titanate (SrTiO3), silica (SiO2), silicon tetrachloride (SiCl4) and a charge control agent.
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: November 9, 2021
    Assignees: Xerox Corporation, Clarkson University
    Inventors: Elizabeth K. Priebe, Christopher Michael Wolfe, Chieh-Min Cheng, Jordan A. Frank, Richard Partch
  • Publication number: 20210341842
    Abstract: Embodiments of the present disclosure provide a substrate measuring device in a lithography projection apparatus that provides multiple light sources having different wavelengths. In some embodiments, a lithography projection apparatus includes a substrate measuring system disposed proximate to a substrate stage, the substrate measuring system further including an emitter including multiple light sources configured to provide multiple beams of light, each of at least some of the multiple beams of light having a different wavelength, at least one optical fiber, wherein each of respective portions of the at least one optical fiber is configured to pass a respective one of the multiple beams of light, and a receiver positioned to collected light emitted from the emitter and reflected off of a substrate disposed on the substrate stage.
    Type: Application
    Filed: July 13, 2021
    Publication date: November 4, 2021
    Inventors: Min-Cheng WU, Chi-Hung LIAO
  • Publication number: 20210343575
    Abstract: A substrate table is provided. The substrate table includes a main body having a surface and a plurality of burls extending from the surface. The burls are configured to support a substrate on the main body. The substrate table further includes a number of vacuum channels provided in the burls to apply a vacuum to the substrate. The vacuum channels are distributed throughout the main body and arranged in a grid pattern.
    Type: Application
    Filed: July 14, 2021
    Publication date: November 4, 2021
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Min-Cheng WU, Chi-Hung LIAO