Patents by Inventor Min Chie Jeng

Min Chie Jeng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150363526
    Abstract: A method includes receiving input information related to devices of an integrated circuit. A first simulation of the integrated circuit is performed over a first time period. Average temperature changes of the devices over the first time period are calculated. A second simulation of the integrated circuit is performed over a second time period using the average temperature changes of the devices. The first simulation and the second simulation are executed by a processor unit.
    Type: Application
    Filed: June 13, 2014
    Publication date: December 17, 2015
    Inventors: Min-Chie Jeng, Chung-Kai Lin, Ke-Wei Su, Yi-Shun Huang, Ya-Chin Liang, Cheng Hsiao, Juan Yi Chen, Wai-Kit Lee
  • Patent number: 9203146
    Abstract: An antenna includes a substrate and a conductive top plate over the substrate. A feed line is connected to the top plate, and the feed line comprises a first through-silicon via (TSV) structure passing through the substrate. The feed line is arranged to carry a radio frequency signal. A method of designing an antenna includes selecting a shape of a top plate, determining a size of the top plate based on an intended signal frequency, and determining, based on the shape of the top plate, a location of each TSV of at least one TSV contacting the top plate. A method of implementing an antenna includes forming a first feed line through a substrate, the first feed line comprising a TSV, and forming a top plate over the substrate, the top plate being electrically conductive and connected to the first feed line.
    Type: Grant
    Filed: February 5, 2014
    Date of Patent: December 1, 2015
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hsiao-Tsung Yen, Jhe-Ching Lu, Yu-Ling Lin, Chin-Wei Kuo, Min-Chie Jeng
  • Publication number: 20150325517
    Abstract: The present disclosure provides a semiconductor device. The semiconductor device includes a semiconductor substrate having an integrated circuit (IC) device; an interconnect structure disposed on the semiconductor substrate and coupled with the IC device; and a transformer disposed on the semiconductor substrate and integrated in the interconnect structure. The transformer includes a first conductive feature; a second conductive feature inductively coupled with the first conductive feature; a third conductive feature electrically connected to the first conductive feature; and a fourth conductive feature electrically connected to the second conductive feature. The third and fourth conductive features are designed and configured to be capacitively coupled to increase a coupling coefficient of the transformer.
    Type: Application
    Filed: July 20, 2015
    Publication date: November 12, 2015
    Inventors: Hsiao-Tsung Yen, Chin-Wei Kuo, Ho-Hsiang Chen, Min-Chie Jeng, Yu-Ling Lin
  • Patent number: 9171798
    Abstract: Methods and apparatus for forming a semiconductor device package with a transmission line using a micro-bump layer are disclosed. The micro-bump layer may comprise micro-bumps and micro-bump lines, formed between a top device and a bottom device. A signal transmission line may be formed using a micro-bump line above a bottom device. A ground plane may be formed using a redistribution layer (RDL) within the bottom device, or using additional micro-bump lines. The RDL formed ground plane may comprise open slots. There may be RDLs at the bottom device and the top device above and below the micro-bump lines to form parts of the ground planes.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: October 27, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Ling Lin, Hsiao-Tsung Yen, Chin-Wei Kuo, Min-Chie Jeng
  • Patent number: 9147020
    Abstract: A method includes simulating characteristics of a first transmission line having a first length, and simulating characteristics of a second transmission line having a second length greater than the first length. A calculation is then performed on the characteristics of the first transmission line and the characteristics of the second transmission line to generate intrinsic characteristics of a third transmission line having a length equal to a difference of the second length and the first length.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: September 29, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsiu-Ying Cho, Jiun-Kai Huang, Wen-Sheh Huang, Chin-Wei Kuo, Min-Chie Jeng
  • Patent number: 9141735
    Abstract: The present disclosure provides systems for predicting semiconductor reliability. In an embodiment a method for predicting the semiconductor reliability includes receiving a degradation parameter input of a semiconductor device and using a degradation equation to determine a plurality of bias dependent slope values for degradation over a short time period according to the degradation parameter input. The plurality of slope values include at least two different slope values for degradation over time. The system accumulates the plurality of slope values and projects the accumulated slope values over a long time period to determine a stress effect for the semiconductor device.
    Type: Grant
    Filed: June 18, 2010
    Date of Patent: September 22, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jia-Lin Lo, Ke-Wei Su, Min-Chie Jeng, Feng-Ling Hsiao, Cheng Hsiao, Yi-Shun Huang, Yi-Chun Chen
  • Publication number: 20150255391
    Abstract: In accordance with an embodiment, a semiconductor device comprises a semiconductor die, an interposer, and conductive bumps bonding the semiconductor die to the interposer. The semiconductor die comprises a first metallization layer, and the first metallization layer comprises a first conductive pattern. The interposer comprises a second metallization layer, and the second metallization layer comprises a second conductive pattern. Some of the conductive bumps electrically couple the first conductive pattern to the second conductive pattern to form a coil. A magnetic layer is positioned within the coil. In another embodiment, a coil is formed on a single substrate, wherein a magnetic layer is positioned within the coil. Other embodiments contemplate other configurations of coils, inductors, and/or transformers, and contemplate methods of manufacture.
    Type: Application
    Filed: May 24, 2015
    Publication date: September 10, 2015
    Inventors: Cheng-Wei Luo, Hsiao-Tsung Yen, Chin-Wei Kuo, Min-Chie Jeng
  • Patent number: 9121891
    Abstract: An apparatus for de-embedding through substrate vias is provided. The apparatus may include pads on a first side of a substrate are coupled to through vias extending through a substrate, wherein pairs of the through vias are interconnected by transmission lines of varying lengths along a second side of the substrate. The apparatus may further include pairs of pads coupled together by transmission lines of the same varying lengths. Apparatuses may include through vias surrounding a through via device under test. The surrounding through vias are connected to the through via device under test by a backside metal layer. The apparatus may further include a dummy structure having an area equal to an area of the backside metal layer.
    Type: Grant
    Filed: July 15, 2014
    Date of Patent: September 1, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsiao-Tsung Yen, Min-Chie Jeng, Victor Chih Yuan Chang, Chin-Wei Kuo, Yu-Ling Lin
  • Patent number: 9087838
    Abstract: The present disclosure provides a semiconductor device. The semiconductor device includes a semiconductor substrate having an integrated circuit (IC) device; an interconnect structure disposed on the semiconductor substrate and coupled with the IC device; and a transformer disposed on the semiconductor substrate and integrated in the interconnect structure. The transformer includes a first conductive feature; a second conductive feature inductively coupled with the first conductive feature; a third conductive feature electrically connected to the first conductive feature; and a fourth conductive feature electrically connected to the second conductive feature. The third and fourth conductive features are designed and configured to be capacitively coupled to increase a coupling coefficient of the transformer.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: July 21, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsiao-Tsung Yen, Yu-Ling Lin, Chin-Wei Kuo, Ho-Hsiang Chen, Min-Chie Jeng
  • Patent number: 9041152
    Abstract: In accordance with an embodiment, a semiconductor device comprises a semiconductor die, an interposer, and conductive bumps bonding the semiconductor die to the interposer. The semiconductor die comprises a first metallization layer, and the first metallization layer comprises a first conductive pattern. The interposer comprises a second metallization layer, and the second metallization layer comprises a second conductive pattern. Some of the conductive bumps electrically couple the first conductive pattern to the second conductive pattern to form a coil. A magnetic layer is positioned within the coil. In another embodiment, a coil is formed on a single substrate, wherein a magnetic layer is positioned within the coil. Other embodiments contemplate other configurations of coils, inductors, and/or transformers, and contemplate methods of manufacture.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: May 26, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Wei Luo, Hsiao-Tsung Yen, Chin-Wei Kuo, Min-Chie Jeng
  • Publication number: 20150123244
    Abstract: A differential MOS capacitor includes a first plurality of upper capacitor plates, a second plurality of upper capacitor plates, and a conductive plate. At least two of the second plurality of upper capacitor plates are spaced laterally from each other and are disposed laterally between at least two of the first plurality of upper capacitor plates. The conductive plate is configured to serve as a common bottom capacitor plate such that a first capacitor is formed by the first plurality of upper capacitor plates and the conductive plate and a second capacitor is formed by the second plurality of upper capacitor plates and the conductive plate.
    Type: Application
    Filed: January 12, 2015
    Publication date: May 7, 2015
    Inventors: Hsiao-Tsung YEN, Yu-Ling LIN, Chin-Wei KUO, Min-Chie JENG
  • Publication number: 20150031184
    Abstract: A method of manufacturing a package may include: providing a first device having a first redistribution layer (RDL) and an insulator layer disposed over the first RDL; and forming a first micro-bump line over the insulator layer of the first device. The first micro-bump line may extend laterally over a surface of the insulator layer facing away from the first RDL, and a first inductor of the package comprises the first RDL and the first micro-bump line.
    Type: Application
    Filed: October 14, 2014
    Publication date: January 29, 2015
    Inventors: Hsiao-Tsung Yen, Min-Chie Jeng, Hsien-Pin Hu, Tzuan-Horng Liu, Chin-Wei Kuo, Chung-Yu Lu, Yu-Ling Lin
  • Patent number: 8941212
    Abstract: The present disclosure relates to a multi-level integrated inductor that provides for a good inductance and Q-factor. In some embodiments, the integrated inductor has a first inductive structure with a first metal layer disposed in a first spiral pattern onto a first IC die and a second inductive structure with a second metal layer disposed in a second spiral pattern onto a second IC die. The first IC die is vertically stacked onto the second IC die. A conductive interconnect structure is located vertically between the first and second IC die and electrically connects the first metal layer to the second metal layer. The conductive interconnect structure provides for a relatively large distance between the first and second inductive structures that provides for an inductance having a high Q-factor over a large range of frequencies.
    Type: Grant
    Filed: February 6, 2013
    Date of Patent: January 27, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsiao-Tsung Yen, Cheng-Wei Luo, Chin-Wei Kuo, Min-Chie Jeng
  • Patent number: 8901752
    Abstract: A device includes a die including a main circuit and a first pad coupled to the main circuit. A work piece including a second pad is bonded to the die. A first plurality of micro-bumps is electrically coupled in series between the first and the second pads. Each of the plurality of micro-bumps includes a first end joining the die and a second end joining the work piece. A micro-bump is bonded to the die and the work piece. The second pad is electrically coupled to the micro-bump.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: December 2, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsiao-Tsung Yen, Yu-Ling Lin, Cheng-Hung Lee, Chin-Wei Kuo, Ho-Hsiang Chen, Min-Chie Jeng
  • Patent number: 8901714
    Abstract: An integrated circuit device includes a semiconductor body, active components formed over the semiconductor body, one or more seal rings surrounding the active components, and a signal line. One or more of the seal rings are configured to provide the primary return path for current flowing through the signal line.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: December 2, 2014
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsiao-Tsung Yen, Yu-Ling Lin, Cheng-Wei Luo, Chin-Wei Kuo, Chewn-Pu Jou, Min-Chie Jeng
  • Patent number: 8896094
    Abstract: Methods and apparatus for forming a semiconductor device package with inductors and transformers using a micro-bump layer are disclosed. The micro-bump layer may comprise micro-bumps and micro-bump lines, formed between a top die and a bottom die, or between a die and an interposer. An inductor can be formed by a redistribution layer within a bottom device and a micro-bump line above the bottom device connected to the RDL. The inductor may be a symmetric inductor, a spiral inductor, a helical inductor which is a vertical structure, or a meander inductor. A pair of inductors with micro-bump lines can form a transformer.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: November 25, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsiao-Tsung Yen, Yu-Ling Lin, Chung-Yu Lu, Chin-Wei Kuo, Tzuan-Horng Liu, Hsien-Pin Hu, Min-Chie Jeng
  • Publication number: 20140327005
    Abstract: An apparatus for de-embedding through substrate vias is provided. The apparatus may include pads on a first side of a substrate are coupled to through vias extending through a substrate, wherein pairs of the through vias are interconnected by transmission lines of varying lengths along a second side of the substrate. The apparatus may further include pairs of pads coupled together by transmission lines of the same varying lengths. Apparatuses may include through vias surrounding a through via device under test. The surrounding through vias are connected to the through via device under test by a backside metal layer. The apparatus may further include a dummy structure having an area equal to an area of the backside metal layer.
    Type: Application
    Filed: July 15, 2014
    Publication date: November 6, 2014
    Inventors: Hsiao-Tsung Yen, Min-Chie Jeng, Victor Chih Yuan Chang, Chin-Wei Kuo, Yu-Ling Lin
  • Patent number: 8860114
    Abstract: The present disclosure provides an integrated circuit. The integrated circuit includes a substrate having a surface that is defined by a first axis and a second axis perpendicular to the first axis; and a capacitor structure disposed on the substrate. The capacitor structure includes a first conductive component; a second conductive component and a third conductive component symmetrically configured on opposite sides of the first conductive component. The first, second and third conductive components are separated from each other by respective dielectric material.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: October 14, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsiao-Tsung Yen, Yu-Ling Lin, Chin-Wei Kuo, Ho-Hsiang Chen, Min-Chie Jeng
  • Publication number: 20140264742
    Abstract: A structure includes first, second, and third conductive leaf structures. The first conductive leaf structure includes a first conductive midrib and conductive veins. The second conductive leaf structure is electrically connected to the first conductive leaf structure, and includes a second conductive midrib, conductive veins extending toward the first conductive midrib, and conductive veins extending away from the first conductive midrib. The third conductive leaf structure includes a third conductive midrib between the first conductive midrib and the second conductive midrib, conductive veins extending toward the first conductive midrib, and conductive veins extending toward the second conductive midrib.
    Type: Application
    Filed: May 24, 2013
    Publication date: September 18, 2014
    Inventors: Hsiao-Tsung Yen, Cheng-Wei Luo, Jun-Cheng Huang, Chin-Wei Kuo, Min-Chie Jeng
  • Publication number: 20140264734
    Abstract: In accordance with an embodiment, a semiconductor device comprises a semiconductor die, an interposer, and conductive bumps bonding the semiconductor die to the interposer. The semiconductor die comprises a first metallization layer, and the first metallization layer comprises a first conductive pattern. The interposer comprises a second metallization layer, and the second metallization layer comprises a second conductive pattern. Some of the conductive bumps electrically couple the first conductive pattern to the second conductive pattern to form a coil. A magnetic layer is positioned within the coil. In another embodiment, a coil is formed on a single substrate, wherein a magnetic layer is positioned within the coil. Other embodiments contemplate other configurations of coils, inductors, and/or transformers, and contemplate methods of manufacture.
    Type: Application
    Filed: July 3, 2013
    Publication date: September 18, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Wei Luo, Hsiao-Tsung Yen, Chin-Wei Kuo, Min-Chie Jeng