Patents by Inventor Min Chie Jeng

Min Chie Jeng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140278197
    Abstract: Some embodiments relate to a wafer. The wafer includes a first dummy component comprising two or more first dummy component transmission lines. One of the first dummy component transmission lines operably couples a first signal test pad to a second signal test pad, and an other of the first dummy component transmission lines operably couples a third signal test pad to a fourth signal test pad. A second dummy component comprises two or more second dummy component transmission lines. One of the second dummy component transmission lines operably couples a fifth signal test pad to a sixth signal test pad, and an other of the second dummy component transmission lines operably couples a seventh signal test pad to an eighth signal test pad. Other embodiments are also disclosed.
    Type: Application
    Filed: April 17, 2013
    Publication date: September 18, 2014
    Applicant: Taiwan Semiconductor Manufacturing Co. Ltd.
    Inventors: Hsiao-Tsung Yen, Chin-Wei Kuo, Chih-Yuan Chang, Min-Chie Jeng
  • Publication number: 20140264745
    Abstract: An integrated circuit device includes a semiconductor body, active components formed over the semiconductor body, one or more seal rings surrounding the active components, and a signal line. One or more of the seal rings are configured to provide the primary return path for current flowing through the signal line.
    Type: Application
    Filed: June 13, 2013
    Publication date: September 18, 2014
    Inventors: Hsiao-Tsung Yen, Yu-Ling Lin, Cheng-Wei Luo, Chin-Wei Kuo, Chewn-Pu Jou, Min-Chie Jeng
  • Patent number: 8809073
    Abstract: A method includes providing on a substrate having at least two through substrate vias (“TSVs”) a plurality of test structures for de-embedding the measurement of the intrinsic characteristics of a device under test (DUT) including at least two of the TSVs; measuring the intrinsic characteristics [L] for a first and a second test structure on the substrate including two pads coupled with a transmission line of length L; using simultaneous solutions of ABCD matrix or T matrix form equations, and the measured intrinsic characteristics, solving for the intrinsic characteristics of the pads and the transmission lines; de-embedding the measurements of the third and fourth test structures using the intrinsic characteristics of the pads and the transmission lines; and using simultaneous solutions of ABCD matrix or T matrix form equations for BM_L and BM_LX, and the measured intrinsic characteristics, solving for the intrinsic characteristics of the TSVs.
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: August 19, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsiao-Tsung Yen, Yu-Ling Lin, Chin-Wei Kuo, Victor Chih Yuan Chang, Min-Chie Jeng
  • Publication number: 20140217546
    Abstract: The present disclosure relates to a multi-level integrated inductor that provides for a good inductance and Q-factor. In some embodiments, the integrated inductor has a first inductive structure with a first metal layer disposed in a first spiral pattern onto a first IC die and a second inductive structure with a second metal layer disposed in a second spiral pattern onto a second IC die. The first IC die is vertically stacked onto the second IC die. A conductive interconnect structure is located vertically between the first and second IC die and electrically connects the first metal layer to the second metal layer. The conductive interconnect structure provides for a relatively large distance between the first and second inductive structures that provides for an inductance having a high Q-factor over a large range of frequencies.
    Type: Application
    Filed: February 6, 2013
    Publication date: August 7, 2014
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsiao-Tsung Yen, Cheng-Wei Luo, Chin-Wei Kuo, Min-Chie Jeng
  • Publication number: 20140203397
    Abstract: Methods and apparatus for forming a semiconductor device package with inductors and transformers using a micro-bump layer are disclosed. The micro-bump layer may comprise micro-bumps and micro-bump lines, formed between a top die and a bottom die, or between a die and an interposer. An inductor can be formed by a redistribution layer within a bottom device and a micro-bump line above the bottom device connected to the RDL. The inductor may be a symmetric inductor, a spiral inductor, a helical inductor which is a vertical structure, or a meander inductor. A pair of inductors with micro-bump lines can form a transformer.
    Type: Application
    Filed: January 23, 2013
    Publication date: July 24, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hsiao-Tsung Yen, Yu-Ling Lin, Chung-Yu Lu, Chin-Wei Kuo, Tzuan-Horng Liu, Hsien-Pin Hu, Min-Chie Jeng
  • Patent number: 8754818
    Abstract: Some embodiments relate to a semiconductor module comprising an integrated antenna structure configured to wirelessly transmit signals. The integrated antenna structure has a lower metal layer and an upper metal layer. The lower metal layer is disposed on a lower die and is connected to a ground terminal. The upper metal layer is disposed on an upper die and is connected to a signal generator configured to generate a signal to be wirelessly transmitted. The upper die is stacked on the lower die and is connected to the lower die by way of an adhesion layer having one or more micro-bumps. By connecting the lower and upper die together by way of the adhesion layer, the lower and upper metal layers are separated from each other by a large spacing that provides for a good performance of the integrated antenna structure.
    Type: Grant
    Filed: July 5, 2012
    Date of Patent: June 17, 2014
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsiao-Tsung Yen, Yu-Ling Lin, Chin-Wei Kuo, Ho-Hsiang Chen, Min-Chie Jeng
  • Publication number: 20140152512
    Abstract: An antenna includes a substrate and a conductive top plate over the substrate. A feed line is connected to the top plate, and the feed line comprises a first through-silicon via (TSV) structure passing through the substrate. The feed line is arranged to carry a radio frequency signal. A method of designing an antenna includes selecting a shape of a top plate, determining a size of the top plate based on an intended signal frequency, and determining, based on the shape of the top plate, a location of each TSV of at least one TSV contacting the top plate. A method of implementing an antenna includes forming a first feed line through a substrate, the first feed line comprising a TSV, and forming a top plate over the substrate, the top plate being electrically conductive and connected to the first feed line.
    Type: Application
    Filed: February 5, 2014
    Publication date: June 5, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hsiao-Tsung YEN, Jhe-Ching LU, Yu-Ling LIN, Chin-Wei KUO, Min-Chie JENG
  • Publication number: 20140117501
    Abstract: A differential MOS capacitor structure includes two capacitor sections coupled to different gates and operating using different signals. The respective signals may be 180° out of phase. The capacitor sections of the differential capacitor each include two or more upper capacitor plates disposed over a single common lower capacitor plate which serves as a common node thereby preventing parasitic capacitance. The upper capacitor plates of a first capacitor section are adjacent one another with no electrical components disposed between them. The upper capacitor plates of a second capacitor section are adjacent one another with no electrical components disposed between them. The upper capacitor plates are formed of a plurality of stacked conductive layers in some embodiments.
    Type: Application
    Filed: October 25, 2012
    Publication date: May 1, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsiao-Tsung YEN, Yu-Ling LIN, Chin-Wei KUO, Min-Chie JENG
  • Patent number: 8686507
    Abstract: A system and method for electrostatic discharge protection. The system includes a plurality of transistors. The plurality of transistors includes a plurality of gate regions, a plurality of source regions, and a plurality of drain regions. The plurality of source regions and the plurality of drain regions are located within an active area in a substrate, and the active area is adjacent to at least an isolation region in the substrate. Additionally, the system includes a polysilicon region. The polysilicon region is separated from the substrate by a dielectric layer, and the polysilicon region intersects each of the plurality of gate regions. At least a part of the polysilicon region is on the active area.
    Type: Grant
    Filed: September 6, 2006
    Date of Patent: April 1, 2014
    Assignee: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: Ting Chieh Su, Min Chie Jeng, Chin Chang Liao, Jun Cheng Huang
  • Patent number: 8674883
    Abstract: An antenna includes a substrate and a top plate disposed over the substrate. At least one feed line is connected to the top plate, and each feed line comprises a first through-silicon via (TSV) structure passing through the substrate. At least one ground line is connected to the top plate, and each ground line comprises a second TSV structure passing through the substrate. The top plate is electrically conductive, and the at least one feed line is arranged to carry a radio frequency signal. The at least one ground line is arranged to be coupled to a ground.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: March 18, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsiao-Tsung Yen, Jhe-Ching Lu, Yu-Ling Lin, Chin-Wei Kuo, Min-Chie Jeng
  • Publication number: 20140070366
    Abstract: A semiconductor structure is provided. The semiconductor structure includes a floating substrate; and a capacitor grounded and connected to the floating substrate. A method of manufacturing a semiconductor structure is also provided.
    Type: Application
    Filed: September 13, 2012
    Publication date: March 13, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: HSIAO-TSUNG YEN, YU-LING LIN, CHIN-WEI KUO, HO-HSIANG CHEN, CHEWN-PU JOU, MIN-CHIE JENG
  • Publication number: 20140008773
    Abstract: Some embodiments relate to a semiconductor module comprising an integrated antenna structure configured to wirelessly transmit signals. The integrated antenna structure has a lower metal layer and an upper metal layer. The lower metal layer is disposed on a lower die and is connected to a ground terminal. The upper metal layer is disposed on an upper die and is connected to a signal generator configured to generate a signal to be wirelessly transmitted. The upper die is stacked on the lower die and is connected to the lower die by way of an adhesion layer having one or more micro-bumps. By connecting the lower and upper die together by way of the adhesion layer, the lower and upper metal layers are separated from each other by a large spacing that provides for a good performance of the integrated antenna structure.
    Type: Application
    Filed: July 5, 2012
    Publication date: January 9, 2014
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsiao-Tsung Yen, Yu-Ling Lin, Chin-Wei Kuo, Ho-Hsiang Chen, Min-Chie Jeng
  • Publication number: 20130277794
    Abstract: A device includes a die including a main circuit and a first pad coupled to the main circuit. A work piece including a second pad is bonded to the die. A first plurality of micro-bumps is electrically coupled in series between the first and the second pads. Each of the plurality of micro-bumps includes a first end joining the die and a second end joining the work piece. A micro-bump is bonded to the die and the work piece. The second pad is electrically coupled to the micro-bump.
    Type: Application
    Filed: March 15, 2013
    Publication date: October 24, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsiao-Tsung Yen, Yu-Ling Lin, Cheng-Hung Lee, Chin-Wei Kuo, Ho-Hsiang Chen, Min-Chie Jeng
  • Publication number: 20130228894
    Abstract: The present disclosure provides an integrated circuit. The integrated circuit includes a substrate having a surface that is defined by a first axis and a second axis perpendicular to the first axis; and a capacitor structure disposed on the substrate. The capacitor structure includes a first conductive component; a second conductive component and a third conductive component symmetrically configured on opposite sides of the first conductive component. The first, second and third conductive components are separated from each other by respective dielectric material.
    Type: Application
    Filed: March 2, 2012
    Publication date: September 5, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hsiao-Tsung Yen, Yu-Ling Lin, Chin-Wei Kuo, Ho-Hsiang Chen, Min-Chie Jeng
  • Patent number: 8502620
    Abstract: A system and method for transmitting signals is disclosed. An embodiment comprises a balun, such as a Marchand balun, which has a first transformer with a primary coil and a first secondary coil and a second transformer with the primary coil and a second secondary coil. The first secondary coil and the second secondary coil are connected to a ground plane, and the ground plane has slot lines located beneath the separation of the coils in the first transformer and the second transformer. The slot lines may also have fingers.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: August 6, 2013
    Assignee: Taiwan Semiconductor Maufacturing Company, Ltd.
    Inventors: Jhe-Ching Lu, Hsiao-Tsung Yen, Sally Liu, Tzu-Jin Yeh, Min-Chie Jeng
  • Publication number: 20130099352
    Abstract: The present disclosure provides a semiconductor device. The semiconductor device includes a semiconductor substrate having an integrated circuit (IC) device; an interconnect structure disposed on the semiconductor substrate and coupled with the IC device; and a transformer disposed on the semiconductor substrate and integrated in the interconnect structure. The transformer includes a first conductive feature; a second conductive feature inductively coupled with the first conductive feature; a third conductive feature electrically connected to the first conductive feature; and a fourth conductive feature electrically connected to the second conductive feature. The third and fourth conductive features are designed and configured to be capacitively coupled to increase a coupling coefficient of the transformer.
    Type: Application
    Filed: October 25, 2011
    Publication date: April 25, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hsiao-Tsung Yen, Yu-Ling Lin, Chin-Wei Kuo, Ho-Hsiang Chen, Min-Chie Jeng
  • Patent number: 8399961
    Abstract: A device includes a die including a main circuit and a first pad coupled to the main circuit. A work piece including a second pad is bonded to the die. A first plurality of micro-bumps is electrically coupled in series between the first and the second pads. Each of the plurality of micro-bumps includes a first end joining the die and a second end joining the work piece. A micro-bump is bonded to the die and the work piece. The second pad is electrically coupled to the micro-bump.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: March 19, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsiao-Tsung Yen, Yu-Ling Lin, Cheng Hung Lee, Chin-Wei Kuo, Ho-Hsiang Chen, Min-Chie Jeng
  • Publication number: 20130032799
    Abstract: A method includes providing on a substrate having at least two through substrate vias (“TSVs”) a plurality of test structures for de-embedding the measurement of the intrinsic characteristics of a device under test (DUT) including at least two of the TSVs; measuring the intrinsic characteristics [L] for a first and a second test structure on the substrate including two pads coupled with a transmission line of length L; using simultaneous solutions of ABCD matrix or T matrix form equations, and the measured intrinsic characteristics, solving for the intrinsic characteristics of the pads and the transmission lines; de-embedding the measurements of the third and fourth test structures using the intrinsic characteristics of the pads and the transmission lines; and using simultaneous solutions of ABCD matrix or T matrix form equations for BM_L and BM_LX, and the measured intrinsic characteristics, solving for the intrinsic characteristics of the TSVs.
    Type: Application
    Filed: August 3, 2011
    Publication date: February 7, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsiao-Tsung Yen, Yu-Ling Lin, Chin-Wei Kuo, Victor Chih Yuan Chang, Min-Chie Jeng
  • Patent number: 8370774
    Abstract: A method includes determining a mapping between model parameters and electrical parameters of integrated circuits. The model parameters are configured to be used by a simulation tool. A set of electrical parameters is provided, and the mapping is used to map the set of electrical parameters to a set of model parameters.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: February 5, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Ming Tsai, Ke-Wei Su, Cheng Hsiao, Min-Chie Jeng, Jia-Lin Lo, Feng-Ling Hsiao, Yi-Shun Huang
  • Publication number: 20120299778
    Abstract: An antenna includes a substrate and a top plate disposed over the substrate. At least one feed line is connected to the top plate, and each feed line comprises a first through-silicon via (TSV) structure passing through the substrate. At least one ground line is connected to the top plate, and each ground line comprises a second TSV structure passing through the substrate. The top plate is electrically conductive, and the at least one feed line is arranged to carry a radio frequency signal. The at least one ground line is arranged to be coupled to a ground.
    Type: Application
    Filed: May 24, 2011
    Publication date: November 29, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hsiao-Tsung YEN, Jhe-Ching LU, Yu-Ling LIN, Chin-Wei KUO, Min-Chie JENG