Patents by Inventor Ming-Chyi Liu

Ming-Chyi Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220352161
    Abstract: The present disclosure relates to an integrated circuit (IC) that includes a boundary region defined between a low voltage region and a high voltage region, and a method of formation. In some embodiments, the integrated circuit comprises an isolation structure disposed in the boundary region of the substrate. A first polysilicon component is disposed over the substrate alongside the isolation structure. A boundary dielectric layer is disposed on the isolation structure. A second polysilicon component is disposed on the sacrifice dielectric layer.
    Type: Application
    Filed: July 19, 2022
    Publication date: November 3, 2022
    Inventors: Yi-Huan Chen, Chien-Chih Chou, Alexander Kalnitsky, Kong-Beng Thei, Ming Chyi Liu, Shih-Chung Hsiao, Jhih-Bin Chen
  • Publication number: 20220353430
    Abstract: Various embodiments of the present disclosure provide a method for forming a recessed gate electrode that has high thickness uniformity. A gate dielectric layer is deposited lining a recess, and a multilayer film is deposited lining the recess over the gate dielectric layer. The multilayer film comprises a gate electrode layer, a first sacrificial layer over the gate dielectric layer, and a second sacrificial layer over the first sacrificial dielectric layer. A planarization is performed into the second sacrificial layer and stops on the first sacrificial layer. A first etch is performed into the first and second sacrificial layers to remove the first sacrificial layer at sides of the recess. A second etch is performed into the gate electrode layer using the first sacrificial layer as a mask to form the recessed gate electrode. A third etch is performed to remove the first sacrificial layer after the second etch.
    Type: Application
    Filed: July 19, 2022
    Publication date: November 3, 2022
    Inventors: Hung-Shu Huang, Ming Chyi Liu, Tung-He Chou
  • Publication number: 20220344291
    Abstract: In some embodiments, the present disclosure relates to a device that includes an interconnect structure arranged on a frontside of a substrate. The interconnect structure includes interconnect conductive structures embedded within interconnect dielectric layers. A trench extends completely through the substrate to expose multiples ones of the interconnect conductive structures. A bond pad structure is arranged on a backside of the substrate and extends through the trench of the substrate to contact the multiple ones of the interconnect conductive structures. A bonding structure is arranged on the backside of the substrate and electrically contacts the bond pad structure.
    Type: Application
    Filed: July 2, 2021
    Publication date: October 27, 2022
    Inventor: Ming Chyi Liu
  • Publication number: 20220336605
    Abstract: The present disclosure relates to an integrated chip comprising a substrate having a first top surface disposed at a first height, a second top surface disposed at a second height that is less than the first height, and a connecting surface extending from the first top surface to the second top surface. A first source/drain region is disposed along the first top surface of the substrate. A second source/drain region is disposed along the second top surface of the substrate and is laterally separated from the first source/drain region by a channel region of the substrate. A gate structure is arranged between the first source/drain region and the second source/drain region. The gate structure extends from over the first top surface of the substrate to over the connecting surface of the substrate. The gate structure also extends below the first top surface of the substrate.
    Type: Application
    Filed: June 30, 2022
    Publication date: October 20, 2022
    Inventors: Yong-Sheng Huang, Ming Chyi Liu
  • Publication number: 20220336593
    Abstract: An integrated chip includes a gate structure overlying a substrate between a source region and a drain region. A field plate is disposed within a first dielectric layer overlying the substrate. The field plate is laterally offset from the gate structure by a non-zero distance in a direction towards the drain region. An isolation structure is disposed within the substrate. The field plate directly overlies at least a portion of the isolation structure.
    Type: Application
    Filed: June 30, 2022
    Publication date: October 20, 2022
    Inventors: Kaochao Chen, Chia-Cheng Ho, Ming Chyi Liu
  • Publication number: 20220320160
    Abstract: In some embodiments, the present disclosure relates to an image sensor, including a semiconductor substrate, a plurality of photodiodes disposed within the semiconductor substrate, and a deep trench isolation structure separating the plurality of photodiodes from one another and defining a plurality of pixel regions corresponding to the plurality of photodiodes. The plurality of pixel regions includes a first pixel region sensitive to a first region of a light spectrum, a second pixel region sensitive to a second region of the light spectrum, and a third pixel region sensitive to a third region of the light spectrum. The first pixel region is smaller than the second pixel region or the third pixel region.
    Type: Application
    Filed: June 29, 2021
    Publication date: October 6, 2022
    Inventors: Ming Chyi Liu, Hung-Shu Huang
  • Patent number: 11462563
    Abstract: A memory device and a manufacturing method are provided. The method includes: forming a first conductive pattern on a substrate; forming an active structure over the first conductive pattern, wherein the active structure comprises a gate pattern, a channel pillar and a charge storage layer, the channel pillar penetrates the gate pattern and electrically connects with the first conductive pattern, and the charge storage layer is disposed between the gate pattern and the channel pillar; forming a second conductive pattern over the active structure, wherein the second conductive pattern is electrically connected with the channel pillar; and performing formation of the active structure one more time, such that the channel pillars of the active structures are vertically spaced apart from each other, and electrically connected to the second conductive pattern extending in between the channel pillars.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: October 4, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company Ltd.
    Inventors: Yong-Sheng Huang, Ming-Chyi Liu
  • Publication number: 20220311214
    Abstract: In some embodiments, the present disclosure relates to a method of making a microlens for a VCSEL device. The method includes forming a first lens layer over a second reflector layer. The first lens layer has a first average concentration of a first element. A first additional reflector layer is formed over the first lens layer. A second lens layer is formed over the first additional reflector layer. The second lens layer has a second average concentration of the first element greater than the first average concentration. A second additional reflector layer is formed over the second lens layer. An oxidation process is performed to oxidize peripheral portions of the first and second lens layers to form oxidized peripheral portions of the first and second lens layer. The oxidized peripheral portions of the second lens layer are wider than the oxidized peripheral portions of the first lens layer.
    Type: Application
    Filed: June 16, 2022
    Publication date: September 29, 2022
    Inventors: Jhih-Bin Chen, Ming Chyi Liu
  • Publication number: 20220301879
    Abstract: Some embodiments pertain to a semiconductor device. The semiconductor device includes a semiconductor substrate including a trench extending downward into an upper surface of the semiconductor substrate. The trench includes a bottom surface and a plurality of scallops along sidewalls of the trench. An oxide layer lines the bottom surface and the sidewalls of the trench. The oxide layer has varying thicknesses along the sidewalls of the trench at different depths. The varying thicknesses step down at discrete increments as a depth into the trench increases.
    Type: Application
    Filed: June 7, 2022
    Publication date: September 22, 2022
    Inventors: Yu-Hsing Chang, Ming Chyi Liu, Shih-Chang Liu
  • Patent number: 11445104
    Abstract: Various embodiments of the present disclosure provide a method for forming a recessed gate electrode that has high thickness uniformity. A gate dielectric layer is deposited lining a recess, and a multilayer film is deposited lining the recess over the gate dielectric layer. The multilayer film comprises a gate electrode layer, a first sacrificial layer over the gate dielectric layer, and a second sacrificial layer over the first sacrificial dielectric layer. A planarization is performed into the second sacrificial layer and stops on the first sacrificial layer. A first etch is performed into the first and second sacrificial layers to remove the first sacrificial layer at sides of the recess. A second etch is performed into the gate electrode layer using the first sacrificial layer as a mask to form the recessed gate electrode. A third etch is performed to remove the first sacrificial layer after the second etch.
    Type: Grant
    Filed: March 18, 2020
    Date of Patent: September 13, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Shu Huang, Ming Chyi Liu, Tung-He Chou
  • Publication number: 20220285480
    Abstract: The present disclosure, in some embodiments, relates to an integrated chip. The integrated chip includes a dielectric stack disposed over a substrate. The dielectric stack has a first plurality of layers interleaved between a second plurality of layers. The dielectric stack has one or more surfaces that define a plurality of indentations recessed into a side of the dielectric stack at different vertical heights corresponding to the second plurality of layers. A capacitor structure lines the one or more surfaces of the dielectric stack. The capacitor structure includes conductive electrodes separated by a capacitor dielectric.
    Type: Application
    Filed: June 29, 2021
    Publication date: September 8, 2022
    Inventors: Alexander Kalnitsky, Ru-Liang Lee, Ming Chyi Liu, Sheng-Chan Li, Sheng-Chau Chen
  • Publication number: 20220285412
    Abstract: Various embodiments of the present disclosure are directed towards an image sensor. The image sensor comprises a plurality of photodetectors disposed within a substrate. A metal grid layer is disposed over the substrate. The metal grid layer comprises a metal grid structure overlying a central pixel region of the substrate. The metal grid layer continuously extends from the central pixel region to a peripheral pixel region of the substrate that laterally encloses the central pixel region. An upper metal structure is disposed over the metal grid layer. The upper metal structure overlies the peripheral pixel region. The upper metal structure is laterally offset from the metal grid structure. A lower surface of the upper metal structure is disposed vertically over an upper surface of the metal grid structure.
    Type: Application
    Filed: May 24, 2021
    Publication date: September 8, 2022
    Inventors: Ming Chyi Liu, Jiech-Fun Lu
  • Patent number: 11437785
    Abstract: A vertical cavity surface emitting laser (VCSEL) device includes a microlens arranged over a reflector stack. The reflector stack includes alternating reflector layers of a first material and a second material. The microlens stack includes a first lens layer, a second lens layer arranged over the first lens layer, and a third lens layer arranged over the second lens layer. The first lens layer includes a first average concentration of a first element and has a first width. The second lens layer includes a second average concentration of the first element greater than the first average concentration and has a second width smaller than the first width. The third lens layer includes a third average concentration of the first element greater than the second average concentration and has a third width smaller than the second width.
    Type: Grant
    Filed: September 23, 2019
    Date of Patent: September 6, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jhih-Bin Chen, Ming Chyi Liu
  • Patent number: 11430956
    Abstract: The present disclosure relates to a resistive random access memory (RRAM) device architecture, that includes a thin single layer of a conductive etch-stop layer between a lower metal interconnect and a bottom electrode of an RRAM cell. The conductive etch-stop layer provides simplicity in structure and the etch-selectivity of this layer provides protection to the underlying layers. The conductive etch stop layer can be etched using a dry or wet etch to land on the lower metal interconnect. In instances where the lower metal interconnect is copper, etching the conductive etch stop layer to expose the copper does not produce as much non-volatile copper etching by-products as in traditional methods. Compared to traditional methods, some embodiments of the disclosed techniques reduce the number of mask step and also reduce chemical mechanical polishing during the formation of the bottom electrode.
    Type: Grant
    Filed: September 21, 2019
    Date of Patent: August 30, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming Chyi Liu, Yuan-Tai Tseng, Chern-Yow Hsu, Shih-Chang Liu, Chia-Shiung Tsai
  • Publication number: 20220270943
    Abstract: A semiconductor memory device and method of making the same are disclosed. The semiconductor memory device includes a substrate that includes a memory region and a peripheral region, a transistor including a metal gate located in the peripheral region, a composite dielectric film structure located over the metal gate of the transistor, the composite dielectric film structure including a first dielectric layer and a second dielectric layer over the first dielectric layer, where the second dielectric layer has a greater density than a density of the first dielectric layer, and at least one memory cell located in the memory region. The composite dielectric film structure provides enhanced protection of the metal gate against etching damage and thereby improves device performance.
    Type: Application
    Filed: September 14, 2021
    Publication date: August 25, 2022
    Inventors: Sheng-Chieh CHEN, Chih-Ren HSIEH, Ming-Lun LEE, Wei-Ming WANG, Ming Chyi LIU
  • Patent number: 11424255
    Abstract: A semiconductor device includes a substrate, an isolation feature, a floating gate, and a control gate. The substrate has a protruding portion. The isolation feature surrounds the protruding portion of the substrate. The floating gate is over the protruding portion of the substrate, in which a sidewall of the floating gate is aligned with a sidewall of the protruding portion of the substrate. The control gate is over the floating gate.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: August 23, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ming-Chyi Liu, Chih-Ren Hsieh, Sheng-Chieh Chen
  • Publication number: 20220262899
    Abstract: The present disclosure relates to a method of forming an integrated chip. The method includes forming a plurality of isolation structures within a substrate. The substrate is selectively etched to form a gate base recess within the substrate. The plurality of isolation structures are selectively etched to form a plurality of gate extension trenches extending outward from the gate base recess; forming a conductive material within the gate base recess and the plurality of gate extension trenches to form a gate electrode; and forming a source region and a drain region on opposing sides of the gate electrode.
    Type: Application
    Filed: May 2, 2022
    Publication date: August 18, 2022
    Inventors: Jhih-Bin Chen, Ming Chyi Liu
  • Patent number: 11417741
    Abstract: The present disclosure relates to an integrated chip comprising a substrate having a first top surface disposed at a first height, a second top surface disposed at a second height that is less than the first height, and a connecting surface extending from the first top surface to the second top surface. A first source/drain region is disposed along the first top surface of the substrate. A second source/drain region is disposed along the second top surface of the substrate and is laterally separated from the first source/drain region by a channel region of the substrate. A gate structure is arranged between the first source/drain region and the second source/drain region. The gate structure extends from over the first top surface of the substrate to over the connecting surface of the substrate. The gate structure also extends below the first top surface of the substrate.
    Type: Grant
    Filed: November 20, 2020
    Date of Patent: August 16, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yong-Sheng Huang, Ming Chyi Liu
  • Patent number: 11410999
    Abstract: The present disclosure relates to an integrated circuit (IC) that includes a boundary region defined between a low voltage region and a high voltage region, and a method of formation. In some embodiments, the integrated circuit comprises an isolation structure disposed in the boundary region of the substrate. A first polysilicon component is disposed over the substrate alongside the isolation structure. A boundary dielectric layer is disposed on the isolation structure. A second polysilicon component is disposed on the sacrifice dielectric layer.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: August 9, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Huan Chen, Chien-Chih Chou, Alexander Kalnitsky, Kong-Beng Thei, Ming Chyi Liu, Shih-Chung Hsiao, Jhih-Bin Chen
  • Patent number: 11411086
    Abstract: An integrated chip includes a field plate overlying an isolation structure. A gate electrode overlies a substrate between a source region and a drain region. An etch stop layer laterally extends from an upper surface of the gate electrode to a front-side of the substrate. The etch stop layer overlies a drift region disposed between the source region and the drain region. The field plate is disposed within a first inter-level dielectric (ILD) layer overlying the substrate. The field plate extends from a top surface of the first ILD layer to an upper surface of the etch stop layer. The isolation structure is disposed within the substrate and extends from the front-side of the substrate to a point below the front-side of the substrate. The isolation structure is disposed laterally between the gate electrode and the drain region.
    Type: Grant
    Filed: March 17, 2020
    Date of Patent: August 9, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kaochao Chen, Chia-Cheng Ho, Ming Chyi Liu