Patents by Inventor Ming-Hsien Wu

Ming-Hsien Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10211664
    Abstract: An apparatus for transmission of wireless energy and an apparatus for reception of wireless energy are provided. The apparatus for transmission of wireless energy includes a natural energy conversion module, an energy converter, and an energy transmitter. The natural energy conversion module receives the natural energy and converts the natural energy into a first electric energy. The energy converter is electrically connected to the natural energy conversion module and converts the first electric energy into the wireless energy. The energy transmitter is electrically connected to the energy converter and transmits the wireless energy to an energy receiver.
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: February 19, 2019
    Assignee: Industrial Technology Research Institute
    Inventors: Ming-Hsien Wu, Mu-Tao Chu, Wen-Yih Liao
  • Publication number: 20190019702
    Abstract: A transfer support adapted to contact a plurality of elements is provided. The transfer support has a first surface, a second surface opposite to the first surface, a recess located on the second surface, a plurality of platforms protruded from the first surface, a plurality of supporting pillars distributed in the recess and a plurality of through holes. The platforms have carry surfaces adapted to contact the plurality of elements. The through holes extend from the carry surfaces of the platforms to the recess, and two of the adjacent supporting pillars are spaced apart from each other to form an air passage. In addition, a transfer module is also provided.
    Type: Application
    Filed: December 20, 2017
    Publication date: January 17, 2019
    Applicant: Industrial Technology Research Institute
    Inventors: Ming-Hsien Wu, Yih-Der Guo, Yen-Hsiang Fang, Yao-Jun Tsai, Yi-Chen Lin
  • Publication number: 20190019718
    Abstract: A transfer support adapted to contact a plurality of elements is provided. The transfer support has a first surface, a second surface opposite to the first surface, a recess located on the second surface, a plurality of platforms protruded from the first surface, a plurality of supporting pillars distributed in the recess and a plurality of through holes. The platforms have carry surfaces adapted to contact the plurality of elements. The through holes extend from the carry surfaces of the platforms to the recess, and two of the adjacent supporting pillars are spaced apart from each other to form an air passage. In addition, a transfer module is also provided.
    Type: Application
    Filed: July 3, 2018
    Publication date: January 17, 2019
    Applicant: Industrial Technology Research Institute
    Inventors: Ming-Hsien Wu, Yih-Der Guo, Yen-Hsiang Fang, Yao-Jun Tsai, Yi-Chen Lin
  • Patent number: 10147622
    Abstract: An electric-programmable magnetic module comprising a micro electro mechanical system (MEMS) chip and a bonding equipment is provided. The MEMS chip comprises a plurality of electromagnetic coils and each of the electromagnetic coils is individually controlled. The MEMS chip is assembled with and carried by the bonding equipment.
    Type: Grant
    Filed: February 9, 2017
    Date of Patent: December 4, 2018
    Assignees: Industrial Technology Research Institute, PlayNitride Inc.
    Inventors: Ming-Hsien Wu, Yen-Hsiang Fang, Chia-Hsin Chao
  • Patent number: 10134709
    Abstract: A light emitting diode package including a circuit layer, a light-shielding layer, a plurality of light emitting diodes and an encapsulation layer is provided. A thickness of the circuit layer is less than 100 ?m. The light-shielding layer is disposed on a first surface of the circuit layer and the light-shielding layer has a plurality of apertures. The light emitting diodes are disposed on the first surface of the circuit layer and in the apertures of the light-shielding layer. The light emitting diodes are electrically connected to the circuit layer. The encapsulation layer covers the light-shielding layer. A refractive index of the encapsulation layer is 1.4 and to 1.7. The Young's modulus of the encapsulation layer is larger than or equal to 1 GPa. A thickness of the encapsulation layer is greater than thicknesses of the light emitting diodes.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: November 20, 2018
    Assignee: Industrial Technology Research Institute
    Inventors: Ming-Hsien Wu, Yao-Jun Tsai, Chia-Hsin Chao, Yen-Hsiang Fang, Yi-Chen Lin, Ching-Ya Yeh
  • Publication number: 20180301265
    Abstract: A magnetic transfer module adapted to transfer a plurality of electronic elements. The magnetic transfer module includes an electromagnet and a plurality of transfer unit. The transfer units are connected to the electromagnet, each of the transfer units includes a ferromagnetic material element, and at least one of the transfer units includes a heating element. The electromagnet magnetizes the ferromagnetic material element, such that the ferromagnetic material element magnetically attracts one of the electronic elements. The heating element is disposed between the electromagnet and the ferromagnetic material element, and heats the ferromagnetic material element to demagnetize the ferromagnetic material element while being actuated.
    Type: Application
    Filed: November 27, 2017
    Publication date: October 18, 2018
    Applicant: Industrial Technology Research Institute
    Inventors: Ming-Hsien Wu, Yen-Hsiang Fang, Chia-Hsin Chao
  • Publication number: 20180108284
    Abstract: A three-dimensional display module includes a substrate, a display layer, a first electrode layer, a liquid-crystal layer, a second electrode layer, and a drive unit. The substrate has first electrodes and second electrodes. The display layer is disposed on the substrate and includes light-emitting elements. The first electrode layer is disposed on the display layer. The liquid-crystal layer is disposed on the display layer. The second electrode layer is disposed on the liquid-crystal layer. The drive unit drives the first electrodes and the first electrode layer to supply power to the light-emitting elements, such that the light-emitting elements generate light passing through the liquid-crystal layer to form a display image. The drive unit drives the second electrodes and the second electrode layer to produce an electric field on the liquid-crystal layer to change focal length of the liquid-crystal layer so as to control depth of field of the display image.
    Type: Application
    Filed: December 8, 2016
    Publication date: April 19, 2018
    Applicant: Industrial Technology Research Institute
    Inventors: Ying-Chien Chu, Yen-Hsiang Fang, Chia-Hsin Chao, Ming-Hsien Wu, Shih-Hao Wang
  • Patent number: 9922800
    Abstract: Embodiments of a method for generating ions in an ion source are provided. The method for generating ions in an ion source includes introducing a dopant gas and a diluent gas into an ion source arc chamber. The method for generating ions in an ion source further includes generating plasma in the ion source arc chamber based on the dopant gas and the diluent gas. In addition, the dopant gas includes carbon monoxide, and the diluent gas includes xenon and hydrogen.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: March 20, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD
    Inventors: Ming-Hui Li, Stanley Chang, Po-Yi Tseng, Chia-Cheng Liu, Chang-Chun Wu, Shen-Han Lin, Chih-Wen Huang, Ming-Hsien Wu
  • Publication number: 20180032826
    Abstract: A biometric device includes a substrate, an image sensor, at least one infrared light emitting diode (IR LED), a supporting structure and an optical layer. The image sensor is disposed on the substrate. The at least one IR LED is disposed on the substrate. The supporting structure is disposed on the substrate and located between the image sensor and the at least one infrared light emitting diode. The optical layer is disposed on the supporting structure, covers the image sensor, and includes a coded pattern.
    Type: Application
    Filed: October 11, 2017
    Publication date: February 1, 2018
    Applicant: Industrial Technology Research Institute
    Inventors: Chia-Hsin Chao, Yen-Hsiang Fang, Ming-Hsien Wu, Po-Hsun Wang
  • Patent number: 9847047
    Abstract: A display pixel suitable for being arranged on a carrier is provided. The display pixel includes a plurality of light-emitting diode chips. The light-emitting diode chips are disposed on and electrically connected to the carrier. Each of the light-emitting diode chips respectively serves as a sub-pixel and includes a semiconductor device layer, and the semiconductor device layer includes a display light-emitting mesa and at least one redundant light-emitting mesa. During a period of driving each of the light-emitting diode chips, one of the display light-emitting mesa and the at least one redundant light-emitting mesa in each of the light-emitting diode chips is capable of emitting light. A display panel including a plurality of the display pixels mentioned above is also provided.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: December 19, 2017
    Assignee: Industrial Technology Research Institute
    Inventors: Ming-Hsien Wu, Yen-Hsiang Fang, Yao-Jun Tsai
  • Patent number: 9825013
    Abstract: A light emitting device array including a circuit substrate and a plurality of device layers is provided. The circuit substrate includes a plurality of bonding pads and a plurality of conductive bumps located over the bonding pads. The device layers are capable of emitting different colored lights electrically connected with the circuit substrate through the conductive bumps and the bonding pads. The device layers capable of emitting different colored lights have different thicknesses and the conductive bumps bonded with the device layers capable of emitting different colored lights have different heights such that top surfaces of the device layers capable of emitting different colored lights are located on a same level of height.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: November 21, 2017
    Assignee: Industrial Technology Research Institute
    Inventors: Wen-Yung Yeh, Chia-Hsin Chao, Ming-Hsien Wu, Kuang-Yu Tai
  • Patent number: 9773711
    Abstract: A picking-up and placing process for electronic devices includes: forming a plurality of electronic devices arranged in an array on a carrier, wherein a first conductive layer having a conductive pattern is disposed between each of the electronic devices and the carrier, and a width of the electronic device is greater than that of the corresponding conductive pattern; selectively picking-up parts of the electronic devices and corresponding first conductive layers from the carrier via a picking-up and placing module; and placing the parts of the electronic devices and the corresponding first conductive layers on a target substrate by the picking-up and placing module. An electronic module is further provided.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: September 26, 2017
    Assignee: Industrial Technology Research Institute
    Inventors: Ming-Hsien Wu, Yen-Hsiang Fang
  • Patent number: 9692509
    Abstract: A driving method of a light emitting device including visible light emitting elements is provided. In a first visible light communication mode, a first portion of the visible light emitting elements is driven and a second portion of the visible light emitting elements is idled for the first portion of the visible light emitting elements having a first current density. In a second visible light communication mode, each of the visible light emitting elements is driven so as to have a second current density. An illumination brightness difference of the light emitting device between the first visible light communication mode and the second visible light communication mode is smaller than 15%.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: June 27, 2017
    Assignee: Industrial Technology Research Institute
    Inventors: Chia-Hsin Chao, Yen-Hsiang Fang, Ming-Hsien Wu
  • Publication number: 20170162091
    Abstract: A display pixel suitable for being arranged on a carrier is provided. The display pixel includes a plurality of light-emitting diode chips. The light-emitting diode chips are disposed on and electrically connected to the carrier. Each of the light-emitting diode chips respectively serves as a sub-pixel and includes a semiconductor device layer, and the semiconductor device layer includes a display light-emitting mesa and at least one redundant light-emitting mesa. During a period of driving each of the light-emitting diode chips, one of the display light-emitting mesa and the at least one redundant light-emitting mesa in each of the light-emitting diode chips is capable of emitting light. A display panel including a plurality of the display pixels mentioned above is also provided.
    Type: Application
    Filed: December 28, 2015
    Publication date: June 8, 2017
    Inventors: Ming-Hsien Wu, Yen-Hsiang Fang, Yao-Jun Tsai
  • Publication number: 20170148650
    Abstract: An electric-programmable magnetic module comprising a micro electro mechanical system (MEMS) chip and a bonding equipment is provided. The MEMS chip comprises a plurality of electromagnetic coils and each of the electromagnetic coils is individually controlled. The MEMS chip is assembled with and carried by the bonding equipment.
    Type: Application
    Filed: February 9, 2017
    Publication date: May 25, 2017
    Applicants: Industrial Technology Research Institute, PlayNitride Inc.
    Inventors: Ming-Hsien Wu, Yen-Hsiang Fang, Chia-Hsin Chao
  • Publication number: 20170149498
    Abstract: A driving method of a light emitting device including visible light emitting elements is provided. In a first visible light communication mode, a first portion of the visible light emitting elements is driven and a second portion of the visible light emitting elements is idled for the first portion of the visible light emitting elements having a first current density. In a second visible light communication mode, each of the visible light emitting elements is driven so as to have a second current density. An illumination brightness difference of the light emitting device between the first visible light communication mode and the second visible light communication mode is smaller than 15%.
    Type: Application
    Filed: December 21, 2015
    Publication date: May 25, 2017
    Inventors: Chia-Hsin Chao, Yen-Hsiang Fang, Ming-Hsien Wu
  • Patent number: 9620556
    Abstract: A method for forming an image-sensor device is provided. The method includes providing a first semiconductor substrate having a first surface and a second surface opposite to the first surface. The method includes forming a device layer over the first surface of the first semiconductor substrate. The method includes bonding the first semiconductor substrate to a second semiconductor substrate after the formation of the device layer. The second surface faces the second semiconductor substrate. The method includes forming a diffusion layer between the first semiconductor substrate and the second semiconductor substrate. The diffusion layer has a dopant concentration gradient that increases in a direction from the first semiconductor substrate toward the second semiconductor substrate.
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: April 11, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chien-Nan Tu, Yu-Lung Yeh, Ming-Hsien Wu
  • Patent number: 9607907
    Abstract: A picking-up and placement process for electronic devices comprising: (a) providing a first substrate having a plurality of electronic devices formed thereon, the electronic devices being arranged in an array, and each of the electronic devices comprising a magnetic portion; (b) selectively picking-up parts of the electronic devices from the first substrate via a magnetic force generated from an electric-programmable magnetic module; and (c) bonding the parts of the electronic devices picked-up by the electric-programmable magnetic module with a second substrate.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: March 28, 2017
    Assignees: Industrial Technology Research Institute, PlayNitride Inc.
    Inventors: Ming-Hsien Wu, Yen-Hsiang Fang, Chia-Hsin Chao
  • Publication number: 20170028647
    Abstract: In one exemplary embodiment, a three dimensional printing system may include a tank filled with liquid forming material, a carrier platform, an optical module disposed under the tank, and a control module is provided. The control module is electrically connected to the optical module and the carrier platform, such that the carrier platform is controlled to move in the tank, and the optical module is controlled to generate light irradiating to the liquid forming material to form a solidification layer on the carrier platform. An image position of the optical module is located in a specific position away from the bottom of the tank in the liquid forming material to form a solidification plane, the liquid forming material at the solidification plane is cured and solidified to form the solidification layer, and a plurality of solidification layers are stacked to form a three dimensional object.
    Type: Application
    Filed: December 28, 2015
    Publication date: February 2, 2017
    Inventors: Chia-Hsin Chao, Yen-Hsiang Fang, Ming-Hsien Wu, Ying-Chien Chu
  • Patent number: D834097
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: November 20, 2018
    Assignee: Dongguan Hong Lin Industrial Co., Ltd.
    Inventors: Chang-Wei Lin, Ming-Hsien Wu