Patents by Inventor Ming-Hsien Wu

Ming-Hsien Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200111391
    Abstract: A spliced display including a transparent substrate, a plurality of (light-emitting diode) LED modules, at least one control element, and a signal transmission structure is provided. The transparent substrate has a display surface and a back surface opposite to each other. The LED modules are disposed on the back surface of the transparent substrate to be spliced with each other. Each of the LED modules includes a driving backplane and a plurality of micro LEDs, and the micro LEDs are disposed in an array between the driving backplane and the transparent substrate. The control element is disposed on the transparent substrate. The control element is connected to the LED modules via the signal transmission structure, and the LED modules are connected to each other via the signal transmission structure.
    Type: Application
    Filed: December 22, 2018
    Publication date: April 9, 2020
    Applicant: Industrial Technology Research Institute
    Inventors: Chia-Hsin Chao, Ming-Hsien Wu, Yen-Hsiang Fang, Po-Hsun Wang, Li-Chun Huang
  • Patent number: 10566125
    Abstract: A magnetic transfer module adapted to transfer a plurality of electronic elements. The magnetic transfer module includes an electromagnet and a plurality of transfer unit. The transfer units are connected to the electromagnet, each of the transfer units includes a ferromagnetic material element, and at least one of the transfer units includes a heating element. The electromagnet magnetizes the ferromagnetic material element, such that the ferromagnetic material element magnetically attracts one of the electronic elements. The heating element is disposed between the electromagnet and the ferromagnetic material element, and heats the ferromagnetic material element to demagnetize the ferromagnetic material element while being actuated.
    Type: Grant
    Filed: November 27, 2017
    Date of Patent: February 18, 2020
    Assignee: Industrial Technology Research Institute
    Inventors: Ming-Hsien Wu, Yen-Hsiang Fang, Chia-Hsin Chao
  • Publication number: 20200042810
    Abstract: A biometric device includes a substrate, an image sensor, an optical layer and at least one infrared light emitting diode (IR LED). The image sensor is disposed on the substrate. The optical layer is disposed on the image sensor and includes a diffraction pattern. The IR LED is disposed on the diffraction pattern of the optical layer. The optical layer is located between the IR LED and the image sensor.
    Type: Application
    Filed: October 9, 2019
    Publication date: February 6, 2020
    Applicant: Industrial Technology Research Institute
    Inventors: Chia-Hsin Chao, Yen-Hsiang Fang, Ming-Hsien Wu
  • Patent number: 10541233
    Abstract: A display device including a circuit substrate, a plurality of pixels, and a light-shielding layer is provided. The pixels include a plurality of light-emitting elements. The light-emitting elements are disposed on the circuit substrate and are electrically connected to the circuit substrate. The light-emitting elements in the pixels are arranged along an arrangement direction. The light-shielding layer is disposed on the circuit substrate and has a plurality of pixel apertures. The pixels are disposed in a corresponding pixel aperture. The light-shielding layer includes a plurality of first light-shielding patterns extending in the arrangement direction and a plurality of second light-shielding patterns connected to the first light-shielding patterns. The extending direction of the second light-shielding patterns is different from the extending direction of the first light-shielding patterns.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: January 21, 2020
    Assignees: Industrial Technology Research Institute, Macroblock, Inc.
    Inventors: Po-Hsun Wang, Chia-Hsin Chao, Ming-Hsien Wu, Yen-Hsiang Fang, Chien-Chung Lin, Ming-Jer Kao, Feng-Pin Chang
  • Patent number: 10522062
    Abstract: A three-dimensional display module includes a substrate, a display layer, a first electrode layer, a liquid-crystal layer, a second electrode layer, and a drive unit. The substrate has first electrodes and second electrodes. The display layer is disposed on the substrate and includes light-emitting elements. The first electrode layer is disposed on the display layer. The liquid-crystal layer is disposed on the display layer. The second electrode layer is disposed on the liquid-crystal layer. The drive unit drives the first electrodes and the first electrode layer to supply power to the light-emitting elements, such that the light-emitting elements generate light passing through the liquid-crystal layer to form a display image. The drive unit drives the second electrodes and the second electrode layer to produce an electric field on the liquid-crystal layer to change focal length of the liquid-crystal layer so as to control depth of field of the display image.
    Type: Grant
    Filed: December 8, 2016
    Date of Patent: December 31, 2019
    Assignee: Industrial Technology Research Institute
    Inventors: Ying-Chien Chu, Yen-Hsiang Fang, Chia-Hsin Chao, Ming-Hsien Wu, Shih-Hao Wang
  • Publication number: 20190355785
    Abstract: A display array including a semiconductor stacked layer, an insulating layer, a plurality of electrode pads, and a driving backplane is provided. The semiconductor stacked layer has a plurality of light emitting regions. The insulating layer is disposed to an outer surface of the semiconductor stacked layer and contacts the semiconductor stacked layer. The insulating layer has a plurality of openings. The electrode pads are disposed to the insulating layer. The driving backplane is disposed to the semiconductor stacked layer. The electrode pads are respectively electrically connected to a portion of the semiconductor stacked layer and the driving backplane via the openings of the insulating layer to drive the light emitting regions. The electrode pads are located in the openings of the insulating layer and separated by the insulating layer, and the adjacent light emitting regions in the semiconductor stacked layer are not patterned.
    Type: Application
    Filed: December 26, 2018
    Publication date: November 21, 2019
    Applicant: Industrial Technology Research Institute
    Inventors: Ming-Hsien Wu, Chia-Hsin Chao, Yen-Hsiang Fang
  • Publication number: 20190355705
    Abstract: A method for manufacturing a display array includes the following steps: providing a substrate and forming a semiconductor stacked layer on the substrate; forming an insulating layer and a plurality of electrode pads on an outer surface of the semiconductor stacked layer, the insulating layer and the electrode pads directly contacting the semiconductor stacked layer, wherein the insulating layer has a plurality of openings, and the electrode pads are respectively located in the openings of the insulating layer and separated by the insulating layer; and transferring the semiconductor stacked layer, the insulating layer and the electrode pads from the substrate to a driving backplane, wherein the electrode pads are respectively electrically connected to a portion of the semiconductor stacked layer and the driving backplane through the openings of the insulating layer to form a plurality of light emitting regions in the semiconductor stacked layer.
    Type: Application
    Filed: December 26, 2018
    Publication date: November 21, 2019
    Applicant: Industrial Technology Research Institute
    Inventors: Ming-Hsien Wu, Chia-Hsin Chao, Yen-Hsiang Fang
  • Patent number: 10431483
    Abstract: A transfer support adapted to contact a plurality of elements is provided. The transfer support has a first surface, a second surface opposite to the first surface, a recess located on the second surface, a plurality of platforms protruded from the first surface, a plurality of supporting pillars distributed in the recess and a plurality of through holes. The platforms have carry surfaces adapted to contact the plurality of elements. The through holes extend from the carry surfaces of the platforms to the recess, and two of the adjacent supporting pillars are spaced apart from each other to form an air passage. In addition, a transfer module is also provided.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: October 1, 2019
    Assignee: Industrial Technology Research Institute
    Inventors: Ming-Hsien Wu, Yih-Der Guo, Yen-Hsiang Fang, Yao-Jun Tsai, Yi-Chen Lin
  • Publication number: 20190285805
    Abstract: A detection method for electronic devices including steps as follows is provided. The detection method includes: providing an electronic device substrate; attaching a portion of electronic devices of the electronic device substrate through an electronic device transfer module, wherein the electronic device transfer module includes a plurality of detecting elements corresponding to the portion of the electronic devices, and each of the detecting elements includes at least one pair of electrodes; detecting whether a conducting path between the at least one pair of electrodes is generated or not to confirm a status of contact between the portion of the electronic devices and a contact target; and transferring the portion of the electronic devices attached to the electronic device transfer module to a target substrate. An electronic device transfer module having detecting elements is also provided.
    Type: Application
    Filed: June 4, 2019
    Publication date: September 19, 2019
    Applicant: Industrial Technology Research Institute
    Inventors: Ming-Hsien Wu, Yen-Hsiang Fang, Shih-Hao Wang, Yi-Chen Lin
  • Publication number: 20190198483
    Abstract: A display device including a circuit substrate, a plurality of pixels, and a light-shielding layer is provided. The pixels include a plurality of light-emitting elements. The light-emitting elements are disposed on the circuit substrate and are electrically connected to the circuit substrate. The light-emitting elements in the pixels are arranged along an arrangement direction. The light-shielding layer is disposed on the circuit substrate and has a plurality of pixel apertures. The pixels are disposed in a corresponding pixel aperture. The light-shielding layer includes a plurality of first light-shielding patterns extending in the arrangement direction and a plurality of second light-shielding patterns connected to the first light-shielding patterns. The extending direction of the second light-shielding patterns is different from the extending direction of the first light-shielding patterns.
    Type: Application
    Filed: March 26, 2018
    Publication date: June 27, 2019
    Applicants: Industrial Technology Research Institute, Macroblock, Inc.
    Inventors: Po-Hsun Wang, Chia-Hsin Chao, Ming-Hsien Wu, Yen-Hsiang Fang, Chien-Chung Lin, Ming-Jer Kao, Feng-Pin Chang
  • Patent number: 10211664
    Abstract: An apparatus for transmission of wireless energy and an apparatus for reception of wireless energy are provided. The apparatus for transmission of wireless energy includes a natural energy conversion module, an energy converter, and an energy transmitter. The natural energy conversion module receives the natural energy and converts the natural energy into a first electric energy. The energy converter is electrically connected to the natural energy conversion module and converts the first electric energy into the wireless energy. The energy transmitter is electrically connected to the energy converter and transmits the wireless energy to an energy receiver.
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: February 19, 2019
    Assignee: Industrial Technology Research Institute
    Inventors: Ming-Hsien Wu, Mu-Tao Chu, Wen-Yih Liao
  • Publication number: 20190019718
    Abstract: A transfer support adapted to contact a plurality of elements is provided. The transfer support has a first surface, a second surface opposite to the first surface, a recess located on the second surface, a plurality of platforms protruded from the first surface, a plurality of supporting pillars distributed in the recess and a plurality of through holes. The platforms have carry surfaces adapted to contact the plurality of elements. The through holes extend from the carry surfaces of the platforms to the recess, and two of the adjacent supporting pillars are spaced apart from each other to form an air passage. In addition, a transfer module is also provided.
    Type: Application
    Filed: July 3, 2018
    Publication date: January 17, 2019
    Applicant: Industrial Technology Research Institute
    Inventors: Ming-Hsien Wu, Yih-Der Guo, Yen-Hsiang Fang, Yao-Jun Tsai, Yi-Chen Lin
  • Publication number: 20190019702
    Abstract: A transfer support adapted to contact a plurality of elements is provided. The transfer support has a first surface, a second surface opposite to the first surface, a recess located on the second surface, a plurality of platforms protruded from the first surface, a plurality of supporting pillars distributed in the recess and a plurality of through holes. The platforms have carry surfaces adapted to contact the plurality of elements. The through holes extend from the carry surfaces of the platforms to the recess, and two of the adjacent supporting pillars are spaced apart from each other to form an air passage. In addition, a transfer module is also provided.
    Type: Application
    Filed: December 20, 2017
    Publication date: January 17, 2019
    Applicant: Industrial Technology Research Institute
    Inventors: Ming-Hsien Wu, Yih-Der Guo, Yen-Hsiang Fang, Yao-Jun Tsai, Yi-Chen Lin
  • Patent number: 10147622
    Abstract: An electric-programmable magnetic module comprising a micro electro mechanical system (MEMS) chip and a bonding equipment is provided. The MEMS chip comprises a plurality of electromagnetic coils and each of the electromagnetic coils is individually controlled. The MEMS chip is assembled with and carried by the bonding equipment.
    Type: Grant
    Filed: February 9, 2017
    Date of Patent: December 4, 2018
    Assignees: Industrial Technology Research Institute, PlayNitride Inc.
    Inventors: Ming-Hsien Wu, Yen-Hsiang Fang, Chia-Hsin Chao
  • Patent number: 10134709
    Abstract: A light emitting diode package including a circuit layer, a light-shielding layer, a plurality of light emitting diodes and an encapsulation layer is provided. A thickness of the circuit layer is less than 100 ?m. The light-shielding layer is disposed on a first surface of the circuit layer and the light-shielding layer has a plurality of apertures. The light emitting diodes are disposed on the first surface of the circuit layer and in the apertures of the light-shielding layer. The light emitting diodes are electrically connected to the circuit layer. The encapsulation layer covers the light-shielding layer. A refractive index of the encapsulation layer is 1.4 and to 1.7. The Young's modulus of the encapsulation layer is larger than or equal to 1 GPa. A thickness of the encapsulation layer is greater than thicknesses of the light emitting diodes.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: November 20, 2018
    Assignee: Industrial Technology Research Institute
    Inventors: Ming-Hsien Wu, Yao-Jun Tsai, Chia-Hsin Chao, Yen-Hsiang Fang, Yi-Chen Lin, Ching-Ya Yeh
  • Publication number: 20180301265
    Abstract: A magnetic transfer module adapted to transfer a plurality of electronic elements. The magnetic transfer module includes an electromagnet and a plurality of transfer unit. The transfer units are connected to the electromagnet, each of the transfer units includes a ferromagnetic material element, and at least one of the transfer units includes a heating element. The electromagnet magnetizes the ferromagnetic material element, such that the ferromagnetic material element magnetically attracts one of the electronic elements. The heating element is disposed between the electromagnet and the ferromagnetic material element, and heats the ferromagnetic material element to demagnetize the ferromagnetic material element while being actuated.
    Type: Application
    Filed: November 27, 2017
    Publication date: October 18, 2018
    Applicant: Industrial Technology Research Institute
    Inventors: Ming-Hsien Wu, Yen-Hsiang Fang, Chia-Hsin Chao
  • Publication number: 20180108284
    Abstract: A three-dimensional display module includes a substrate, a display layer, a first electrode layer, a liquid-crystal layer, a second electrode layer, and a drive unit. The substrate has first electrodes and second electrodes. The display layer is disposed on the substrate and includes light-emitting elements. The first electrode layer is disposed on the display layer. The liquid-crystal layer is disposed on the display layer. The second electrode layer is disposed on the liquid-crystal layer. The drive unit drives the first electrodes and the first electrode layer to supply power to the light-emitting elements, such that the light-emitting elements generate light passing through the liquid-crystal layer to form a display image. The drive unit drives the second electrodes and the second electrode layer to produce an electric field on the liquid-crystal layer to change focal length of the liquid-crystal layer so as to control depth of field of the display image.
    Type: Application
    Filed: December 8, 2016
    Publication date: April 19, 2018
    Applicant: Industrial Technology Research Institute
    Inventors: Ying-Chien Chu, Yen-Hsiang Fang, Chia-Hsin Chao, Ming-Hsien Wu, Shih-Hao Wang
  • Patent number: 9922800
    Abstract: Embodiments of a method for generating ions in an ion source are provided. The method for generating ions in an ion source includes introducing a dopant gas and a diluent gas into an ion source arc chamber. The method for generating ions in an ion source further includes generating plasma in the ion source arc chamber based on the dopant gas and the diluent gas. In addition, the dopant gas includes carbon monoxide, and the diluent gas includes xenon and hydrogen.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: March 20, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD
    Inventors: Ming-Hui Li, Stanley Chang, Po-Yi Tseng, Chia-Cheng Liu, Chang-Chun Wu, Shen-Han Lin, Chih-Wen Huang, Ming-Hsien Wu
  • Publication number: 20180032826
    Abstract: A biometric device includes a substrate, an image sensor, at least one infrared light emitting diode (IR LED), a supporting structure and an optical layer. The image sensor is disposed on the substrate. The at least one IR LED is disposed on the substrate. The supporting structure is disposed on the substrate and located between the image sensor and the at least one infrared light emitting diode. The optical layer is disposed on the supporting structure, covers the image sensor, and includes a coded pattern.
    Type: Application
    Filed: October 11, 2017
    Publication date: February 1, 2018
    Applicant: Industrial Technology Research Institute
    Inventors: Chia-Hsin Chao, Yen-Hsiang Fang, Ming-Hsien Wu, Po-Hsun Wang
  • Patent number: D834097
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: November 20, 2018
    Assignee: Dongguan Hong Lin Industrial Co., Ltd.
    Inventors: Chang-Wei Lin, Ming-Hsien Wu