Patents by Inventor Ming Jia

Ming Jia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190055237
    Abstract: The present disclosure relates to solid forms of N-{[2?-(2,6-difluoro-3,5-dimethoxyphenyl)-3?-oxo-2?,3?-dihydro-1?H-spiro[cyclopropane-1,4?-[2,7]naphthyridin]-6?-yl]methyl}acrylamide, methods of preparation thereof, and intermediates in the preparation thereof, which are useful in the treatment of the FGFR-associated or mediated diseases such as cancer.
    Type: Application
    Filed: May 25, 2018
    Publication date: February 21, 2019
    Inventors: Yongchun Pan, Chongsheng Eric Shi, Ming Tao, Wayne Han, Michael Xia, Dengjin Wang, Zhongjiang Jia, Jiacheng Zhou, Qun Li
  • Publication number: 20190055037
    Abstract: A mobile rustproofing washing system includes a receptacle, a control module, a water supply module, a filtration module and a washing module. The receptacle is removably disposed on a mobile carrier. The control module is disposed in the receptacle. The water supply module is disposed in the receptacle and includes a front water tank and a rear water tank. The filtration module is connected to the front water tank and the rear water tank. The filtration module receives and filters water from the front water tank. The filtered water is stored in the rear water tank. The washing module connects with the rear water tank and receives water therefrom, so as to carry out a washing process. Therefore, the mobile rustproofing washing system is quick to mount/demount and easy to use, thereby having high mobility.
    Type: Application
    Filed: December 5, 2017
    Publication date: February 21, 2019
    Inventors: Yu-Ping Wang, Chin-Cheng Wu, Ming-Jia Wang, Chun-Yu Chen, Yi-Rong Zeng, Kuan-You Liu, Ming-Ta Hsieh, Ching-Wen Fan
  • Patent number: 10212017
    Abstract: The present invention provides a preamble that is inserted into an OFDMA frame and has a common sequence for all the base stations participating in a transmission. The subscriber station performs fine synchronization using the common sequence on the common preamble, and the resulting peaks will provide the locations of candidate base stations. The base station specific search is then performed in the vicinities of those peaks by using base station specific pseudo-noise sequences. With this two stage cell search, the searching window is drastically reduced. The preamble is matched to known values by a respective receiver to decode the signals and permit multiple signals to be transferred from the transmitter to the receiver. The preamble may comprise two parts, Preamble-1 and Preamble-2, which may be used in different systems, including multioutput, multi-input (MIMO) systems.
    Type: Grant
    Filed: November 27, 2017
    Date of Patent: February 19, 2019
    Assignee: APPLE INC.
    Inventors: Jianglei Ma, Hang Zhang, Wen Tong, Ming Jia, Peiying Zhu, Mo-Han Fong
  • Patent number: 10212727
    Abstract: Control signaling in multiple access communication systems, including apparatus and methods, is disclosed. Multiple access to a wireless communication link is based on power modulation division. Modulation information, capacity information, resource scheduling information, and resource assignment information is determined by a base station. Information is transmitted to user equipment devices in a common control channel in accordance with the determined modulation information, capacity information and resource scheduling information. Information is also transmitted to supporting user equipment, which supports the power modulation division multiple access, in a user equipment-specific control channel in accordance with the determined resource assignment information.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: February 19, 2019
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Javad Abdoli, Ming Jia
  • Publication number: 20190052305
    Abstract: A two-phase approach to machine-type communications is provided. In a first phase, for activity detection, at least one symbol is transmitted using a long signature. During a second phase, for data transmission, information-carrying symbols are transmitted using a short spreading signature. Activity detection performance is enhanced through the use of a longer spreading signature.
    Type: Application
    Filed: October 17, 2018
    Publication date: February 14, 2019
    Applicant: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: JAVAD ABDOLI, MING JIA
  • Patent number: 10204417
    Abstract: A method includes receiving an input from a user, the input including a selection of an object, where the object is contained in a video, identifying, in response to the input, the object in the video, determining an attribute of the object associated with a profile of the user, where the profile contains a preference of the user regarding at least one object to be viewed, and determining, in response to the attribute of the object associated with the profile, a target segment in the video, where the target segment includes the object.
    Type: Grant
    Filed: May 10, 2016
    Date of Patent: February 12, 2019
    Assignee: International Business Machines Corporation
    Inventors: Hong Wei Jia, Qian Li, Shuang Li, Hai Lei Song, Yun Ting Wang, Xin Ying Yang, Wenyan Yuan, Guang Ming Zhang
  • Patent number: 10200226
    Abstract: A method and apparatus for improving channel estimation within an OFDM communication system. Channel estimation in OFDM is usually performed with the aid of pilot symbols. The pilot symbols are typically spaced in time and frequency. The set of frequencies and times at which pilot symbols are inserted is referred to as a pilot pattern. In some cases, the pilot pattern is a diagonal-shaped lattice, either regular or irregular. The method first interpolates in the direction of larger coherence (time or frequency). Using these measurements, the density of pilot symbols in the direction of faster change will be increased thereby improving channel estimation without increasing overhead. As such, the results of the first interpolating step can then be used to assist the interpolation in the dimension of smaller coherence (time or frequency).
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: February 5, 2019
    Assignee: Apple Inc.
    Inventors: Jianglei Ma, Ming Jia, Wen Tong, Peiying Zhu, Hang Zhang, Hua Xu, Dongsheng Yu
  • Publication number: 20190036576
    Abstract: The present invention employs a pilot scheme for frequency division multiple access (FDM) communication systems, such as single carrier FDM communication systems. A given transmit time interval will include numerous traffic symbols and two or more short pilot symbols, which are spaced apart from one another by at least one traffic symbol and will have a Fourier transform length that is less than the Fourier transform length of any given traffic symbol. Multiple transmitters will generate pilot information and modulate the pilot information onto sub-carriers of the short pilot symbols in an orthogonal manner. Each transmitter may use different sub-carriers within the time and frequency domain, which is encompassed by the short pilot symbols within the transmit time interval. Alternatively, each transmitter may uniquely encode the pilot information using a unique code division multiplexed code and modulate the encoded pilot information onto common sub-carriers of the short pilot symbols.
    Type: Application
    Filed: October 4, 2018
    Publication date: January 31, 2019
    Inventors: Jianglei Ma, Ming Jia, Hua Xu, Wen Tong, Peiying Zhu, Moussa Abdi
  • Publication number: 20190035946
    Abstract: A solar cell wafer is provided. It is a silicon wafer, and a surface of the silicon wafer has a plurality of pores, wherein based on a total amount of 100% of the plurality of pores, 60% or more of the pores has a circularity greater than 0.5. Therefore, the reflectance of the solar cell wafer can be efficiently reduced.
    Type: Application
    Filed: April 27, 2018
    Publication date: January 31, 2019
    Applicant: Sino-American Silicon Products Inc.
    Inventors: Cheng-Jui Yang, Jian-Jia Huang, Ming-Kung Hsiao, Cheng-Wei Gu, Bo-Kai Wang, Wen-Huai Yu, I-Ching Li, Sung-Lin Hsu, Wen-Ching Hsu
  • Publication number: 20190028160
    Abstract: A codebook C is provided in a MIMO transmitter as well as a MIMO receiver. The codebook C will include M codewords ci, where i is a unique codeword index for each codeword ci. Each codeword defines weighting factors to apply to the MIMO signals, and may correspond to channel matrices or vectors to apply to the MIMO signals prior to transmission from the respective antennas of the MIMO transmitter. The present invention creates codeword subsets Si for each codeword ci of the codebook C. Each codeword subset Si defines L codewords cj, which are selected from all the codewords ci in the codebook C. The codewords cj in a codeword subset Si are the L codewords in the entire codebook that best correlate with the corresponding codeword ci.
    Type: Application
    Filed: July 30, 2018
    Publication date: January 24, 2019
    Inventors: Wen Tong, Hosein Nikopour, Amir Khandani, Hua Xu, Ming Jia, Peiying Zhu, Dong-sheng Yu
  • Patent number: 10181935
    Abstract: Disclosed are a pilot configuration method and an apparatus. The method includes: before allocating a pilot to a first user, determining, by a base station, interference between the first user and a second user if the base station allocates a pilot of the second user to the first user; if the interference between the first user and the second user is less than a preset threshold, the pilot allocated by the base station to the first user is the same as a pilot used by the second user; or if the interference between the first user and the second user is greater than or equal to the preset threshold, the pilot allocated by the base station to the first user is different from the pilot used by the second user.
    Type: Grant
    Filed: November 25, 2016
    Date of Patent: January 15, 2019
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Ming Jia, Jing Qiu
  • Publication number: 20190013904
    Abstract: Embodiments are provided for supporting variable sub-carrier spacing and symbol duration for transmitting OFDM or other waveform symbols and associated cyclic prefixes. The symbol duration includes the useful symbol length and its associated cyclic prefix length. The variable sub-carrier spacing and symbol duration is determined via parameters indicating the sub-carrier spacing, useful symbol length, and cyclic prefix length. An embodiment method, by a network or a network controller, includes establishing a plurality of multiple access block (MAB) types defining different combinations of sub-carrier spacing and symbol duration for waveform transmissions. The method further includes partitioning a frequency and time plane of a carrier spectrum band into a plurality of MAB regions comprising frequency-time slots for the waveform transmissions. The MAB types are then selected for the MAB regions, wherein one MAB type is assigned to one corresponding MAB region.
    Type: Application
    Filed: September 14, 2018
    Publication date: January 10, 2019
    Inventors: Jianglei Ma, Ming Jia
  • Publication number: 20180367357
    Abstract: A method and apparatus for improving channel estimation within an OFDM communication system. Channel estimation in OFDM is usually performed with the aid of pilot symbols. The pilot symbols are typically spaced in time and frequency. The set of frequencies and times at which pilot symbols are inserted is referred to as a pilot pattern. In some cases, the pilot pattern is a diagonal-shaped lattice, either regular or irregular. The method first interpolates in the direction of larger coherence (time or frequency). Using these measurements, the density of pilot symbols in the direction of faster change will be increased thereby improving channel estimation without increasing overhead. As such, the results of the first interpolating step can then be used to assist the interpolation in the dimension of smaller coherence (time or frequency).
    Type: Application
    Filed: August 23, 2018
    Publication date: December 20, 2018
    Inventors: Jianglei Ma, Ming Jia, Wen Tong, Peiying Zhu, Hang Zhang, Hua Xu, Dongsheng Yu
  • Patent number: 10158458
    Abstract: Methods, devices and systems for encoding and transmitting data in a wireless communications system and, in particular, for unscheduled data transmissions including low data rate transmissions. The method for transmitting data in a wireless network includes mapping data according to a predefined sequence pattern from a group of sequence patterns to provide a spreading sequence that includes multiple non-zero elements and that is enabled to partially collide in the wireless network with other spreading sequences that have been mapped according to other sequence patterns from the group; and transmitting the spreading sequence. Multiple sequences may be received by a network node and decoded using successive interference cancellation (SIC) techniques.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: December 18, 2018
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Ming Jia, Jianglei Ma, Javad Abdoli
  • Publication number: 20180352504
    Abstract: A method of transmitting includes categorizing a transmission between the first device and a second device as one of a plurality of transmission types, and selecting an air interface from a plurality of air interface candidates in accordance with the transmission as categorized. The method also includes sending the transmission to the second device using the selected air interface.
    Type: Application
    Filed: August 6, 2018
    Publication date: December 6, 2018
    Inventors: Jianglei Ma, Peiying Zhu, Ming Jia, Wen Tong
  • Patent number: 10148468
    Abstract: A multi building block architecture may be configured to generate a waveform (a “target wideband signal”) for use in a wireless communication system, where the waveform supports a variety of baseband signals. The task of generating a target wideband signal can be divided into several tasks, each task relating to the generating of one of a plurality of sub-carrier bands. Each of the sub-carrier bands (sub-bands) may be generated by one of the sub-band building units included in the sub-band building blocks of the architecture. Several sub-bands may be formed, by a sub-band group building block, into a sub-band group. Multiple sub-band groups may be formed, by a wideband building block, into the target wideband signal.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: December 4, 2018
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Lan Hu, Ming Jia, Wen Tong
  • Publication number: 20180343654
    Abstract: Various disclosed embodiments include methods and systems for communication in a wireless communication system. A method comprises receiving a signal corresponding to a plurality of modulated signals, each of the plurality of modulated signals corresponding to a unique electronic device. The method comprises filtering the received signal with a plurality of filters, each of which is matched to a corresponding filter in a respective electronic device to obtain a filtered signal for the respective electronic device. The method comprises performing a fast Fourier transform (FFT) operation on the filtered signal to obtain demodulated data corresponding to the respective electronic device.
    Type: Application
    Filed: May 30, 2018
    Publication date: November 29, 2018
    Inventors: Javad Abdoli, Ming Jia, Jianglei Ma
  • Publication number: 20180337816
    Abstract: A bit-level operation may be implemented prior to modulation and resource element (RE) mapping in order to generate a NoMA transmission using standard (QAM, QPSK, BPSK, etc.) modulators. In this way, the bit-level operation is exploited to achieve the benefits of NoMA (e.g., improved spectral efficiency, reduced overhead, etc.) at significantly less signal processing and hardware implementation complexity. The bit-level operation is specifically designed to produce an output bit-stream that is longer than the input bit-stream, and that includes output bit-values that are computed as a function of the input bit-values such that when the output bit-stream is subjected to modulation (e.g., m-ary QAM, QPSK, BPSK), the resulting symbols emulate a spreading operation that would otherwise have been generated from the input bit-stream, either by a NoMA-specific modulator or by a symbol-domain spreading operation.
    Type: Application
    Filed: January 26, 2018
    Publication date: November 22, 2018
    Inventors: Sanjeewa Herath, Alireza Bayesteh, Ming Jia, Jianglei Ma
  • Patent number: 10136402
    Abstract: A method for determining synchronization of uplink timing in a machine type communication (MTC) system comprising a machine type communication device (MTCD) and a network element is disclosed that takes advantage of the MTCD being at a fixed location relative to the network element. The method includes receiving at the MTCD an uplink timing adjustment value from the network element and storing the uplink timing adjustment value at the MTCD. The MTCD then uses the stored uplink timing adjustment value from a previous uplink transmission for synchronizing uplink timing for a subsequent uplink transmission from the MTCD to the network element even following a period of inactivity of the MTCD, or expiration of any existing maximum uplink timing alignment period permitted for use of the timing adjustment value by the MTCD, or MTCD clock drift.
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: November 20, 2018
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Yu Cao, Ming Jia
  • Patent number: 10128897
    Abstract: A two-phase approach to machine-type communications is provided. In a first phase, for activity detection, at least one symbol is transmitted using a long signature. During a second phase, for data transmission, information-carrying symbols are transmitted using a short spreading signature. Activity detection performance is enhanced through the use of a longer spreading signature.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: November 13, 2018
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Javad Abdoli, Ming Jia