Patents by Inventor Ming Jia

Ming Jia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11349531
    Abstract: The present invention employs a pilot scheme for frequency division multiple access (FDM) communication systems, such as single carrier FDM communication systems. A given transmit time interval will include numerous traffic symbols and two or more short pilot symbols, which are spaced apart from one another by at least one traffic symbol and will have a Fourier transform length that is less than the Fourier transform length of any given traffic symbol. Multiple transmitters will generate pilot information and modulate the pilot information onto sub-carriers of the short pilot symbols in an orthogonal manner. Each transmitter may use different sub-carriers within the time and frequency domain, which is encompassed by the short pilot symbols within the transmit time interval. Alternatively, each transmitter may uniquely encode the pilot information using a unique code division multiplexed code and modulate the encoded pilot information onto common sub-carriers of the short pilot symbols.
    Type: Grant
    Filed: September 1, 2020
    Date of Patent: May 31, 2022
    Assignee: Apple Inc.
    Inventors: Jianglei Ma, Ming Jia, Hua Xu, Wen Tong, Peiying Zhu, Moussa Abdi
  • Publication number: 20220121963
    Abstract: The present disclosure provides a network operator processing method, apparatus, electronic device and storage medium and relates to the field of artificial intelligence such as deep learning and knowledge graph. The method may include: regarding any operator in the network, performing condition analysis on the operator respectively; regarding the operator as an operator supporting spatial reuse and found from lookup if it is determined according to an analysis result that the operator satisfies a spatial reuse condition. The solution of the present disclosure may be applied to save manpower and time costs, and improve the accuracy of the lookup result.
    Type: Application
    Filed: June 28, 2021
    Publication date: April 21, 2022
    Applicant: BEIJING BAIDU NETCOM SCIENCE AND TECHNOLOGY CO., LTD.
    Inventors: Ming Jia, Yangkai Xu, Guibin Wang
  • Publication number: 20220116278
    Abstract: Systems and methods are provided for identifying an available infrastructure network topology consisting of a set of available network links and a set of available network nodes of a communication network. In the systems and methods, a network node of the communication network is operative to transmit a learning schedule to a plurality of network nodes interconnected by a set of network links of the communication network. The network node receives from each of the plurality of network nodes a communication node record including network performance observations observed by that network node based on the learning schedule transmitted to that network node. Based on the received communication node records, the network node identifies a set of available network links from the set of network links and the set of available network nodes corresponding to the set of available network links.
    Type: Application
    Filed: December 22, 2021
    Publication date: April 14, 2022
    Applicant: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Hang ZHANG, Ming JIA
  • Publication number: 20220109538
    Abstract: A reference signaling scheme is provided that is based on the use of a Zadoff Chu sequence with cyclic repetition, optionally code division multiplexing precoding, together with frequency domain spectral shaping (FDSS). A specific pulse shape design for the FDSS part of the reference signal scheme in some embodiments involves the use of a raised cosine pulse raised to the power of ?. The new solution for generating reference signals has a Low peak average power ratio that matches the PAPR of SC-OQAM, good channel estimation performance, and the ability to implement CDM in the frequency domain to increase multiplexing gain.
    Type: Application
    Filed: October 6, 2020
    Publication date: April 7, 2022
    Applicant: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: NUWAN SURESH FERDINAND, MING JIA, JIANGLEI MA, JAVAD ABDOLI
  • Patent number: 11291017
    Abstract: A method and system are provided for scheduling data transmission in a Multiple-Input Multiple-Output (MIMO) system. The MIMO system may comprise at least one MIMO transmitter and at least one MIMO receiver. Feedback from one or more receivers may be used by a transmitter to improve quality, capacity, and scheduling in MIMO communication systems. The method may include generating or receiving information pertaining to a MIMO channel metric and information pertaining to a Channel Quality Indicator (CQI) in respect of a transmitted signal; and sending a next transmission to a receiver using a MIMO mode selected in accordance with the information pertaining to the MIMO channel metric, and an adaptive coding and modulation selected in accordance with the information pertaining to the CQI.
    Type: Grant
    Filed: November 13, 2020
    Date of Patent: March 29, 2022
    Assignee: BlackBerry Limited
    Inventors: Wen Tong, Ming Jia, Jianming Wu, Dong-Sheng Yu, Peiying Zhu
  • Patent number: 11277871
    Abstract: Physical layer structures and access schemes for use in such networks are described and in particular initial access channel (IACH) structures are proposed. A spectrum efficient downlink (DL) IACH design supports different types of User Equipment (UE) capabilities and different system bandwidths. An IACH includes the synchronization channel (SCH) and broadcast-control channel (BCH). A non-uniform SCH for all system bandwidths is provided, as well as scalable bandwidth BCH depending on system bandwidth. An initial access procedure is provided, as well as an access procedure.
    Type: Grant
    Filed: September 23, 2020
    Date of Patent: March 15, 2022
    Assignee: Apple Inc.
    Inventors: Jianglei Ma, Hua Xu, Ming Jia, Sarah Boumendil, Evelyne Le Strat, Hang Zhang, Peiying Zhu, Wen Tong
  • Publication number: 20220067881
    Abstract: An image correction method and an image correction system based on deep learning are provided. The image correction method includes the following steps. An image containing at least one character is received by a deep learning model, and a perspective transformation matrix is generated according to the image. A perspective transformation is performed on the image according to the perspective transformation matrix to obtain a corrected image containing a front view of the at least one character. An optimized corrected image containing the front view of the at least one character is generated according to the image. An optimized perspective transformation matrix corresponding to the image and the optimized corrected image is obtained. A loss value between the optimized perspective transformation matrix and the perspective transformation matrix is calculated. The deep learning model is updated using the loss value.
    Type: Application
    Filed: November 25, 2020
    Publication date: March 3, 2022
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Guan-De LI, Ming-Jia HUANG, Hung-Hsuan LIN, Yu-Je LI, Chia-Ling LO
  • Patent number: 11252042
    Abstract: Systems and methods are provided for identifying an available infrastructure network topology consisting of a set of available network links and a set of available network nodes of a communication network. In the systems and methods, a network node of the communication network is operative to transmit a learning schedule to a plurality of network nodes interconnected by a set of network links of the communication network. The network node receives from each of the plurality of network nodes a communication node record including network performance observations observed by that network node based on the learning schedule transmitted to that network node. Based on the received communication node records, the network node identifies a set of available network links from the set of network links and the set of available network nodes corresponding to the set of available network links.
    Type: Grant
    Filed: April 3, 2020
    Date of Patent: February 15, 2022
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Hang Zhang, Ming Jia
  • Patent number: 11239962
    Abstract: Embodiments are provided for supporting variable sub-carrier spacing and symbol duration for transmitting OFDM or other waveform symbols and associated cyclic prefixes. The symbol duration includes the useful symbol length and its associated cyclic prefix length. The variable sub-carrier spacing and symbol duration is determined via parameters indicating the sub-carrier spacing, useful symbol length, and cyclic prefix length. An embodiment method, by a network or a network controller, includes establishing a plurality of multiple access block (MAB) types defining different combinations of sub-carrier spacing and symbol duration for waveform transmissions. The method further includes partitioning a frequency and time plane of a carrier spectrum band into a plurality of MAB regions comprising frequency-time slots for the waveform transmissions. The MAB types are then selected for the MAB regions, wherein one MAB type is assigned to one corresponding MAB region.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: February 1, 2022
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Jianglei Ma, Ming Jia
  • Publication number: 20220021483
    Abstract: Methods and systems for two-dimensional (2D) coding are described for broadcast, multicast or groupcast applications. Two or more information code blocks (CBs) are transmitted to a plurality of intended receiving nodes. One or more cross-CB check blocks are generated, each cross-CB check block being generated based on a set of cross-CB bits, the set of cross-CB bits including at least one bit selected from each of at least two of the information CBs. At least one cross-CB check block is transmitted to at least one of the intended receiving nodes.
    Type: Application
    Filed: July 6, 2021
    Publication date: January 20, 2022
    Inventors: Yu CAO, Ming JIA, Jianglei MA
  • Patent number: 11223397
    Abstract: The present invention employs a pilot scheme for frequency division multiple access (FDM) communication systems, such as single carrier FDM communication systems. A given transmit time interval will include numerous traffic symbols and two or more short pilot symbols, which are spaced apart from one another by at least one traffic symbol and will have a Fourier transform length that is less than the Fourier transform length of any given traffic symbol. Multiple transmitters will generate pilot information and modulate the pilot information onto sub-carriers of the short pilot symbols in an orthogonal manner. Each transmitter may use different sub-carriers within the time and frequency domain, which is encompassed by the short pilot symbols within the transmit time interval. Alternatively, each transmitter may uniquely encode the pilot information using a unique code division multiplexed code and modulate the encoded pilot information onto common sub-carriers of the short pilot symbols.
    Type: Grant
    Filed: February 10, 2020
    Date of Patent: January 11, 2022
    Assignee: Apple Inc.
    Inventors: Jianglei Ma, Ming Jia, Hua Xu, Wen Tong, Peiying Zhu, Moussa Abdi
  • Patent number: 11201648
    Abstract: Systems and methods for closed loop MIMO (multiple input and multiple output) wireless communication are provided. Various transmit formats including spatial multiplexing and STTD are defined in which vector or matrix weighting is employed using information fed back from receivers. The feedback information may include channel matrix or SVD-based feedback.
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: December 14, 2021
    Assignee: Apple Inc.
    Inventors: Wen Tong, Ming Jia, Jianglei Ma, Peiying Zhu, Hua Xu, Dong-Sheng Yu, Hang Zhang, Mo-Han Fong
  • Patent number: 11197295
    Abstract: Systems and methods for OFDM channelization are provided that allow for the coexistence of sub-band channels and diversity channels. Methods of defining diversity sub-channels and sub-band sub-channels are provided and systematic channel definition and labeling schemes are provided.
    Type: Grant
    Filed: January 20, 2020
    Date of Patent: December 7, 2021
    Assignee: Apple Inc.
    Inventors: Hang Zhang, Jianglei Ma, Ming Jia, Sophie Vrzic, Mo-Han Fong, Dong-Sheng Yu, Hua Xu
  • Patent number: 11177995
    Abstract: Aspects of the present application provide methods and devices for time domain implementation of a single carrier waveform such as single carrier quadrature amplitude modulation (QAM) DFT-s-OFDM and single carrier Offset QAM (OQAM). A time domain implementation allows flexible symbol lengths, lower implementation complexity as a large IDFT operation is not required in the time domain and support for variable cyclic prefix (CP) length. An OQAM implementation utilizes a pre-processing step to convert a K complex QAM symbol sequence into a 2K OQAM symbol sequence and generates a sequence for transmission in the time domain as opposed to the frequency domain.
    Type: Grant
    Filed: February 5, 2020
    Date of Patent: November 16, 2021
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Nuwan Suresh Ferdinand, Ming Jia, Jianglei Ma
  • Patent number: 11171225
    Abstract: Described is a monolithic integrated circuit for use in quantum computing based on single and multiple coupled quantum dot electron- and hole-spin qubits monolithically integrated with the mm-wave spin manipulation and readout circuitry in commercial complementary metal-oxide-semiconductor (CMOS) technology. The integrated circuit includes a plurality of n-channel or p-channel metal-oxide-semiconductor field-effect transistor (MOSFET) cascodes each including a single-spin qubit or two coupled quantum dot qubits formed in an undoped semiconductor film adjacent at least one top gate. There is also a back gate formed in a silicon substrate adjacent a buried oxide layer or the at least one top gate, where the back gate controls the electron or hole entanglement and exchange interaction between the two coupled quantum dot qubits. The monolithic integrated circuits described may be used for monolithically integrated semiconductor quantum processors for quantum information processing.
    Type: Grant
    Filed: December 5, 2019
    Date of Patent: November 9, 2021
    Inventors: Sorin Petre Voinigescu, Utku Alakusu, Shai Bonen, Ming-Jia Mecca Gong, Lucy Wu
  • Publication number: 20210344546
    Abstract: A system and method of DFT-S-OFDM modulation is provided that uses a set of frequency domain patterns. For a given transmitter, for a set of DFT-S-OFDM symbols, the frequency domain pattern changes according to a time domain hopping pattern. Advantageously, the time domain hopping patterns are defined to allow only a certain amount of overlap, for example for only one DFT-S-OFDM symbol, between any two time domain hopping patterns. This functions to reduce the effect of a collision, when two transmitters use the same frequency pattern, they will do so only for part of the overall transmission. Optionally, frequency domain spectral spreading is used in the transmitter. This can further reduce the PAPR. In the receiver, successive interference cancellation may be employed to reduce the effect of colliding transmissions.
    Type: Application
    Filed: March 23, 2021
    Publication date: November 4, 2021
    Applicant: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: MING JIA, JIANGLEI MA
  • Patent number: 11146363
    Abstract: Systems and methods disclosed herein provide an outer code for HARQ applications, which may be an erasure code. In some embodiments, the outer code has a relatively simple decoding algorithm, increased decoding probability with no extra redundancy packets needed and can correct an arbitrary number of code blocks. In some embodiments, the outer code may be implemented as part of the 5G air interface, also known as new radio (NR), and/or in applications such as vehicle-to-everything (V2X) and/or ultra-reliable low latency communication (URLLC). Some embodiments provide a nested HARQ protocol for HARQ transmission with an outer code.
    Type: Grant
    Filed: April 8, 2019
    Date of Patent: October 12, 2021
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Yu Cao, Ming Jia
  • Publication number: 20210297180
    Abstract: Methods and systems for physical layer network coding based on two-dimensional (2D) joint coding are described. In some methods, first and second packets are obtained. A set of one or more cross-packet check blocks is generated, where each cross-packet check block is generated based on a set of cross-packet bits including at least one bit from each of the first and second packets. At least one cross-packet check block is transmitted to a first communication node.
    Type: Application
    Filed: December 2, 2020
    Publication date: September 23, 2021
    Inventors: Jianglei MA, Ming JIA, Yu CAO, Peiying ZHU, Wen TONG
  • Patent number: 11108607
    Abstract: A system and method are provided for processing symbols for transmission. A set of 2K outputs is produced that includes K real components and K imaginary components from K complex symbols. A Fourier transform operation on the 2K outputs produces 2K Fourier transform outputs. Transmit pulse shaping is applied to the 2K Fourier transform outputs. The transmit pulse shape may be Nyquist or non-Nyquist. An inverse Fourier transform operation on the J pulse shaped outputs produces an inverse Fourier transform output. In the receiver, equalization is performed to remove the effect of both the channel and the transmit pulse shape. Nyquist pulse shaping is performed by applying a Nyquist pulse shape prior to converting back to time domain. The approach avoids self-interference, even in situations where the transmit pulse shape is non-Nyquist. The transmitter is free to select a pulse shape to optimize PAPR without being concerned with interference.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: August 31, 2021
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Nuwan Suresh Ferdinand, Ming Jia, Jianglei Ma
  • Patent number: 11096028
    Abstract: Methods and systems for a frame structure for machine-type communications (MTC) with adjustable pulse bandwidth are described. In an embodiment, the frame structure is an uplink frame structure that illustrates a representation of a plurality of coverage levels. The coverage levels are associated with a coverage range of a base station. Each coverage level is associated with corresponding sub-frames, and each sub-frame within a coverage level has the same sub-frame length and bandwidth.
    Type: Grant
    Filed: August 26, 2015
    Date of Patent: August 17, 2021
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Yu Cao, Ming Jia, Jianglei Ma