Patents by Inventor Ming-Ren Lin

Ming-Ren Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5753967
    Abstract: Submicron contacts/vias and trenches are provided in a dielectric layer by forming an opening having an initial dimension and reducing the initial dimension by depositing a second dielectric material in the opening.
    Type: Grant
    Filed: February 13, 1997
    Date of Patent: May 19, 1998
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Ming-Ren Lin
  • Patent number: 5705430
    Abstract: A dual damascene method of fabricating an interconnection level of conductive lines and connecting vias separated by insulation for integrated circuits and substrate carriers for semiconductor devices using a sacrificial via fill. A first layer of insulating material is formed with via openings. The openings are filled with a sacrificial removable material. A second layer of insulating material is deposed on the first layer. In one embodiment, the etch selectivity to the etchant of the second layer is essentially the same as the sacrificial via fill and, preferably, is substantially higher than second layer. Using a conductive line pattern aligned with the via openings, conductive line openings are etched in the second insulating layer and, during etching, the sacrificial fill is removed from the via openings.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: January 6, 1998
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Steven Avanzino, Subhash Gupta, Rich Klein, Scott D. Luning, Ming-Ren Lin
  • Patent number: 5691238
    Abstract: A method of fabricating an interconnection level of conductive lines and connecting vias separated by insulation for integrated circuits and substrate carriers for semiconductor devices using a reverse damascene in the formation of the conductive lines and vias. A conductive line pattern is first used to etch completely through the layer to form conductive line openings. The openings are completely filled with a conductive material and planarized so that the surfaces of the conductive material and the insulating layer are coplanar. A via pattern is aligned perpendicular to the conductive lines and the conductive material is etched half way through the conductive lines in other than the areas covered by the via pattern. The openings thus created in the upper portion of the conductive lines are filled with insulating material to complete the dual damascene interconnection level with the conductive lines in the lower portion of the insulating layer and upwardly projecting vias in the upper portion of the layer.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: November 25, 1997
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Steven Avanzino, Subhash Gupta, Rich Klein, Scott D. Luning, Ming-Ren Lin
  • Patent number: 5686354
    Abstract: A dual damascene method of fabricating an interconnection level of conductive lines and connecting vias separated by insulation for integrated circuits and substrate carriers for semiconductor devices using a thin protective via mask to form the via openings. A conductive line mask pattern is used to form conductive line openings in an insulating layer. Next, a thin protective layer of conformal material is deposited in the conducive line opening. The protective layer and the insulating layer each have etch resistance to others etchant. Using a via mask pattern, openings are etching the protective layer with the insulating layer serving as and etch stop. Next via openings are etched in the insulating material using the openings in the thin protective layer as the etch mask. If the protective layer is a conductive material, it is removed from the surface of the insulating layer either before or after the conductive line and via openings are filled with a conductive material.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: November 11, 1997
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Steven Avanzino, Subhash Gupta, Rich Klein, Scott D. Luning, Ming-Ren Lin
  • Patent number: 5646448
    Abstract: A multilayer semiconductor structure includes a conductive via. The conductive via includes a pellet of metal having a high resistance to electromigration. The pellet is made from a conformal layer of copper or gold deposited over the via to form a copper or gold reservoir or contact located in the via. A barrier layer is provided between the reservoir and an insulating layer to prevent the pellet from diffusing into the insulating layer. The pellet can be formed by selective deposition or by etching a conformal layer. The conformal layer can be deposited by sputtering, collimated sputtering, chemical vapor deposition (CVD), dipping, evaporating, or by other means. The barrier layer and pellet may be etched by anisotropic dry etching, plasma-assisted etching, or other layer removal techniques.
    Type: Grant
    Filed: August 19, 1996
    Date of Patent: July 8, 1997
    Assignee: Advanced Micro Devices
    Inventors: Richard K. Klein, Darrell Erb, Steven Avanzino, Robin Cheung, Scott Luning, Bryan Tracy, Subhash Gupta, Ming-Ren Lin
  • Patent number: 5639691
    Abstract: A multilayer semiconductor structure includes a conductive via. The conductive via includes a pellet of metal having a high resistance to electromigration. The pellet is made from a conformal layer of copper or gold deposited over the via to form a copper or gold reservoir or contact located in the via. A barrier layer is provided between the reservoir and an insulating layer to prevent the pellet from diffusing into the insulating layer. The pellet can be formed by selective deposition or by etching a conformal layer. The conformal layer can be deposited by sputtering, collimated sputtering, chemical vapor deposition (CVD), dipping, evaporating, or by other means. The barrier layer and pellet may be etched by anisotropic dry etching, plasma-assisted etching, or other layer removal techniques.
    Type: Grant
    Filed: January 24, 1996
    Date of Patent: June 17, 1997
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Richard K. Klein, Darrell M. Erb, Steven Avanzino, Robin Cheung, Scott Luning, Bryan Tracy, Subhash Gupta, Ming-Ren Lin
  • Patent number: 5635423
    Abstract: A semiconductor device containing an interconnection structure having a reduced interwiring spacing is produced by a modified dual damascene process. In one embodiment, an opening for a via is initially formed in a second insulative layer above a first insulative layer with an etch stop layer therebetween. A larger opening for a trench is then formed in the second insulative layer while simultaneously extending the via opening through the etch stop layer and first insulative layer. The trench and via are then simultaneously filled with conductive material.
    Type: Grant
    Filed: October 11, 1994
    Date of Patent: June 3, 1997
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Richard J. Huang, Angela Hui, Robin Cheung, Mark Chang, Ming-Ren Lin
  • Patent number: 5614765
    Abstract: An interconnection level of conductive lines and connecting vias separated by insulation for integrated circuits and substrate carriers for semiconductor devices using dual damascene with only one mask pattern for the formation of both the conductive lines and vias. The mask pattern of conductive lines contains laterally enlarged areas where the via openings are to formed in the insulating material. After the conductive line openings with laterally enlarged areas are created, the openings are filled with a conformal material whose etch selectivity is substantially less than the etch selectivity of the insulating material to the enchant for etching the insulating material and whose etch selectivity is substantially greater than the insulating material to its enchant. The conformal material is anisotropically etched to form sidewalls in the enlarged area and remove the material between the sidewalls but leave material remaining in the parts of the conductive lines openings.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: March 25, 1997
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Steven Avanzino, Subhash Gupta, Rich Klein, Scott D. Luning, Ming-Ren Lin