Patents by Inventor Ming Xi

Ming Xi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6998014
    Abstract: Embodiments of the present invention relate to an apparatus and method of plasma assisted deposition by generation of a plasma adjacent a processing region. One embodiment of the apparatus comprises a substrate processing chamber including a top shower plate, a power source coupled to the top shower plate, a bottom shower plate, and an insulator disposed between the top shower plate and the bottom shower plate. In one aspect, the power source is adapted to selectively provide power to the top shower plate to generate a plasma from the gases between the top shower plate and the bottom shower plate. In another embodiment, a power source is coupled to the top shower plate and the bottom shower plate to generate a plasma between the bottom shower plate and the substrate support.
    Type: Grant
    Filed: July 16, 2002
    Date of Patent: February 14, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Chen-An Chen, Avgerinos Gelatos, Michael X. Yang, Ming Xi, Mark M. Hytros
  • Publication number: 20060009034
    Abstract: In one embodiment of the invention, a method for forming a tungsten-containing layer on a substrate is provided which includes positioning a substrate containing a barrier layer disposed thereon in a process chamber, exposing the substrate to a first soak process for a first time period and depositing a nucleation layer on the barrier layer by flowing a tungsten-containing precursor and a reductant into the process chamber. The method further includes exposing the nucleation layer to a second soak process for a second time period and depositing a bulk layer on the nucleation layer.
    Type: Application
    Filed: January 19, 2005
    Publication date: January 12, 2006
    Inventors: Ken Lai, Ravi Rajagopalan, Amit Khandelwal, Madhu Moorthy, Srinivas Gandikota, Joseph Castro, Aygerinos Gelatos, Cheryl Knepfler, Ping Jian, Hongbin Fang, Chao-Ming Huang, Ming Xi, Michael Yang, Hua Chung, Jeong Byun
  • Publication number: 20050287807
    Abstract: Methods for the deposition of tungsten films are provided. The methods include depositing a nucleation layer by alternatively adsorbing a tungsten precursor and a reducing gas on a substrate, and depositing a bulk layer of tungsten over the nucleation layer.
    Type: Application
    Filed: August 18, 2005
    Publication date: December 29, 2005
    Inventors: Ken Lai, Jeong Byun, Frederick Wu, Ramanujapuran Srinivas, Avgerinos Gelatos, Mei Chang, Moris Kori, Ashok Sinha, Hua Chung, Hongbin Fang, Alfred Mak, Michael Yang, Ming Xi
  • Publication number: 20050277290
    Abstract: Embodiments of the invention generally relate to an apparatus and method of integration of titanium and titanium nitride layers. One embodiment includes providing one or more cycles of a first set of compounds such as a titanium precursor and a reductant, providing one or more cycles of a second set of compounds such as the titanium precursor and a silicon precursor and providing one or more cycles of a third set of compounds such as the titanium precursor and a nitrogen precursor. Another embodiment includes depositing a titanium layer on a substrate, depositing a passivation layer containing titanium silicide, titanium silicon nitride or combinations thereof over the titanium layer and subsequently depositing a titanium nitride layer over the passivation layer. Still another embodiment comprises depositing a titanium layer on a substrate, soaking the titanium layer with a silicon precursor and subsequently depositing a titanium nitride layer thereon.
    Type: Application
    Filed: June 13, 2005
    Publication date: December 15, 2005
    Inventors: Michael Yang, Toshio Itoh, Ming Xi
  • Patent number: 6951804
    Abstract: A method of forming a tantalum-nitride layer (204) for integrated circuit fabrication is disclosed. Alternating or co-reacting pulses of a tantalum containing precursor and a nitrogen containing precursor are provided to a chamber (100) to form layers (305, 307) of tantalum and nitrogen. The nitrogen precursor may be a plasma gas source. The resultant tantalum-nitride layer (204) may be used, for example, as a barrier layer. As barrier layers may be used with metal interconnect structures (206), at least one plasma anneal on the tantalum-nitride layer may be performed to reduce its resistivity and to improve film property.
    Type: Grant
    Filed: February 2, 2001
    Date of Patent: October 4, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Sean M. Seutter, Michael X. Yang, Ming Xi
  • Patent number: 6939804
    Abstract: Methods for the deposition of tungsten films are provided. The methods include depositing a nucleation layer by alternatively adsorbing a tungsten precursor and a reducing gas on a substrate, and depositing a bulk layer of tungsten over the nucleation layer.
    Type: Grant
    Filed: November 18, 2002
    Date of Patent: September 6, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Ken K. Lai, Jeong Soo Byun, Frederick C. Wu, Ramanujapuran A. Srinivas, Avgerinos Gelatos, Mei Chang, Moris Kori, Ashok K. Sinha, Hua Chung, Hongbin Fang, Alfred W. Mak, Michael X. Yang, Ming Xi
  • Publication number: 20050164487
    Abstract: A method of forming a tantalum nitride layer for integrated circuit fabrication is disclosed. In one embodiment, the method includes forming a tantalum nitride layer by chemisorbing a tantalum precursor and a nitrogen precursor on a substrate disposed in a process chamber. A nitrogen concentration of the tantalum nitride layer is reduced by exposing the substrate to a plasma annealing process. A metal-containing layer is then deposited on the tantalum nitride layer by a deposition process.
    Type: Application
    Filed: March 23, 2005
    Publication date: July 28, 2005
    Inventors: Sean Seutter, Michael Yang, Ming Xi
  • Patent number: 6918057
    Abstract: Architecture, circuitry, and methods are provided for programming, writing to, or reading from one or more integrated circuits which may be arranged upon a printed circuit board. Programming and read/write operations can, therefore, be done after integrated circuits are populated upon a printed circuit board to control those integrated circuits using a standard JTAG interface, well-known as the IEEE Std. 1149.1 interface. A shift register used to control one or more electronic subcomponents can be programmed, written to, or read from using JTAG programming languages. However, the shift register, or multiple shift registers, used to control electronic subcomponents need not be JTAG compliant.
    Type: Grant
    Filed: August 24, 2001
    Date of Patent: July 12, 2005
    Inventors: Brenor L. Brophy, Xiao Ming Xi, Dinesh Nadavi
  • Publication number: 20050139160
    Abstract: Embodiments of the present invention generally relate to a small volume chamber with a substrate support. One embodiment of a processing chamber includes a first assembly having a substrate support, a pumping ring disposed around a perimeter of the substrate receiving surface, and a gas distribution assembly disposed over the substrate support. The chamber may further include a gas distribution assembly disposed over the substrate support. The first assembly and the gas distribution assembly can be selectively positioned between an open position and a closed position.
    Type: Application
    Filed: February 16, 2005
    Publication date: June 30, 2005
    Inventors: Lawrence Lei, Alfred Mak, Gwo-Chuan Tzu, Avi Tepman, Ming Xi, Walter Glenn
  • Patent number: 6911391
    Abstract: Embodiments of the present invention generally relate to an apparatus and method of integration of titanium and titanium nitride layers. One embodiment includes providing one or more cycles of a first set of compounds, providing one or more cycles of a second set of compounds, and providing one or more cycles of a third set of compounds. One cycle of the first set of compounds includes introducing a titanium precursor and a reductant. One cycle of the second set of compounds includes introducing the titanium precursor and a silicon precursor. One cycle of the third set of compounds includes introducing the titanium precursor and a nitrogen precursor. Another embodiment includes depositing a titanium layer utilizing titanium halide. Then, a passivation layer is deposited over the titanium layer utilizing titanium halide. The passivation layer may comprise titanium silicide, titanium silicon nitride, and combinations thereof.
    Type: Grant
    Filed: April 8, 2002
    Date of Patent: June 28, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Michael X. Yang, Toshio Itoh, Ming Xi
  • Publication number: 20050059241
    Abstract: A method and system to reduce the resistance of refractory metal layers by controlling the presence of fluorine contained therein. The present invention is based upon the discovery that when employing ALD techniques to form refractory metal layers on a substrate, the carrier gas employed impacts the presence of fluorine in the resulting layer. As a result, the method features chemisorbing, onto the substrate, alternating monolayers of a first compound and a second compound, with the second compound having fluorine atoms associated therewith, with each of the first and second compounds being introduced into the processing chamber along with a carrier gas to control a quantity of the fluorine atoms associated with the monolayer of the second compound.
    Type: Application
    Filed: September 29, 2004
    Publication date: March 17, 2005
    Inventors: Moris Kori, Alfred Mak, Jeong Byun, Lawrence Lei, Hua Chung, Ashok Sinha, Ming Xi
  • Patent number: 6866746
    Abstract: Embodiments of the present invention generally relate to a clamshell and small volume chamber with a fixed substrate support. One embodiment of a processing chamber includes a fixed substrate support having a substrate receiving surface, a pumping ring disposed around a perimeter of the substrate receiving surface, and a gas distribution assembly disposed over the fixed substrate support. The pumping ring forms at least a portion of a pumping channel and has one or more apertures formed therethrough. The chamber may further include a gas-flow diffuser disposed radially inward of the apertures of the pumping ring. Another embodiment of a processing chamber includes a first assembly comprising a fixed substrate support and a second assembly comprising a gas distribution assembly. The first assembly includes a first assembly body that is shaped and sized so that at least a portion of the first assembly body is below the substrate receiving surface of the substrate support.
    Type: Grant
    Filed: November 21, 2002
    Date of Patent: March 15, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Lawrence C. Lei, Alfred W. Mak, Gwo-Chuan Tzu, Avi Tepman, Ming Xi, Walter Benjamin Glenn
  • Patent number: 6846516
    Abstract: Embodiments of the present invention relate to an apparatus and method of cyclical deposition utilizing three or more precursors in which delivery of at least two of the precursors to a substrate structure at least partially overlap. One embodiment of depositing a ternary material layer over a substrate structure comprises providing at least one cycle of gases to deposit a ternary material layer. One cycle comprises introducing a pulse of a first precursor, introducing a pulse of a second precursor, and introducing a pulse of a third precursor in which the pulse of the second precursor and the pulse of the third precursor at least partially overlap. In one aspect, the ternary material layer includes, but is not limited to, tungsten boron silicon (WBxSiy), titanium silicon nitride (TiSixNy), tantalum silicon nitride (TaSixNy), silicon oxynitride (SiOxNy), and hafnium silicon oxide (HfSixOy).
    Type: Grant
    Filed: April 8, 2002
    Date of Patent: January 25, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Michael Xi Yang, Hyungsuk Alexander Yoon, Hui Zhang, Hongbin Fang, Ming Xi
  • Publication number: 20050008779
    Abstract: Embodiments of the present invention relate to an apparatus and method of cyclical deposition utilizing three or more precursors in which delivery of at least two of the precursors to a substrate structure at least partially overlap. One embodiment of depositing a ternary material layer over a substrate structure comprises providing at least one cycle of gases to deposit a ternary material layer. One cycle comprises introducing a pulse of a first precursor, introducing a pulse of a second precursor, and introducing a pulse of a third precursor in which the pulse of the second precursor and the pulse of the third precursor at least partially overlap. In one aspect, the ternary material layer includes, but is not limited to, tungsten boron silicon (WBxSiy), titanium silicon nitride (TiSixNy), tantalum silicon nitride (TaSixNy), silicon oxynitride (SiOxNy), and hafnium silicon oxide (HfSixOy).
    Type: Application
    Filed: August 6, 2004
    Publication date: January 13, 2005
    Inventors: Michael Yang, Hyungsuk Yoon, Hui Zhang, Hongbin Fang, Ming Xi
  • Publication number: 20040247788
    Abstract: A method for forming a tungsten layer on a substrate surface is provided. In one aspect, the method includes positioning the substrate surface in a processing chamber and exposing the substrate surface to a boride. A nucleation layer is then deposited on the substrate surface in the same processing chamber by alternately pulsing a tungsten-containing compound and a reducing gas selected from a group consisting of silane (SiH4), disilane (Si2H6), dichlorosilane (SiCl2H2), derivatives thereof, and combinations thereof. A tungsten bulk fill may then be deposited on the nucleation layer using cyclical deposition, chemical vapor deposition, or physical vapor deposition techniques.
    Type: Application
    Filed: June 29, 2004
    Publication date: December 9, 2004
    Inventors: Hongbin Fang, Hyung-Suk A. Yoon, Ken Kaung Lai, Chi Chung (Yang) Young, James Horng, Ming Xi, Michael X. Yang, Hua Chung
  • Patent number: 6809026
    Abstract: A method to selectively deposit a barrier layer on a metal film formed on a substrate is disclosed. The barrier layer is selectively deposited on the metal film using a cyclical deposition process including a predetermined number of deposition cycles followed by a purge step. Each deposition cycle comprises alternately adsorbing a refractory metal-containing precursor and a reducing gas on the metal film formed on the substrate in a process chamber.
    Type: Grant
    Filed: December 18, 2002
    Date of Patent: October 26, 2004
    Assignee: Applied Materials, Inc.
    Inventors: Hyungsuk Alexander Yoon, Michael X. Yang, Hui Zhang, Soonil Hong, Ming Xi
  • Publication number: 20040209460
    Abstract: Embodiments of the present invention provide a process sequence and related hardware for filling a patterned feature on a substrate with a metal, such as copper. The sequence comprises first forming a reliable barrier layer in the patterned feature to prevent diffusion of the metal into the dielectric layer through which the patterned feature is formed. One sequence comprises forming a generally conformal barrier layer over a patterned dielectric, etching the barrier layer at the bottom of the patterned feature, depositing a second barrier layer, and then filling the patterned feature with a metal, such as copper.
    Type: Application
    Filed: May 7, 2004
    Publication date: October 21, 2004
    Inventors: Ming Xi, Paul Frederick Smith, Ling Chen, Michael X. Yang, Mei Chang, Fusen Chen, Christophe Marcadal, Jenny C. Lin
  • Publication number: 20040209465
    Abstract: A method and apparatus to form a refractory metal layer on a substrate features nucleating a substrate using sequential deposition techniques in which the substrate is serially exposed to first and second reactive gases followed by forming a layer, employing vapor deposition, to subject the nucleation layer to a bulk deposition of a compound contained in one of the first and second reactive gases.
    Type: Application
    Filed: January 22, 2004
    Publication date: October 21, 2004
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Ming Xi, Ashok Sinha, Moris Kori, Alfred W. Mak, Xinliang Lu, Ken Kaung Lai, Karl A. Littau
  • Patent number: 6797340
    Abstract: A method for forming a tungsten layer on a substrate surface is provided. In one aspect, the method includes positioning the substrate surface in a processing chamber and exposing the substrate surface to a boride. A nucleation layer is then deposited on the substrate surface in the same processing chamber by alternately pulsing a tungsten-containing compound and a reducing gas selected from a group consisting of silane (SiH4), disilane (Si2H6), dichlorosilane (SiCl2H2), derivatives thereof, and combinations thereof. A tungsten bulk fill may then be deposited on the nucleation layer using cyclical deposition, chemical vapor deposition, or physical vapor deposition techniques.
    Type: Grant
    Filed: October 10, 2002
    Date of Patent: September 28, 2004
    Assignee: Applied Materials, Inc.
    Inventors: Hongbin Fang, Hyung-Suk A. Yoon, Ken Kaung Lai, Chi Chung Young, James Horng, Ming XI, Michael X. Yang, Hua Chung
  • Publication number: 20040143370
    Abstract: A valve control system for a semiconductor processing chamber includes a system control computer and a plurality of electrically controlled valves associated with the processing chamber. The system further includes a programmable logic controller in communication with the system control computer and operatively coupled to the electrically controlled valves. The refresh time for control of the valves may be less than 10 milliseconds. Consequently, valve control operations do not significantly extend the period of time required for highly repetitive cycling in atomic layer deposition processes. A hardware interlock may be implemented through the output power supply of the programmable logic controller.
    Type: Application
    Filed: December 9, 2003
    Publication date: July 22, 2004
    Inventors: Siqing Lu, Yu Chang, Dongxi Sun, Vinh Dang, Michael X. Yang, Anzhong Chang, Anh N. Nguyen, Ming Xi