Patents by Inventor Minh Huu Le

Minh Huu Le has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140272395
    Abstract: Disclosed herein are systems, methods, and apparatus for forming low emissivity panels that may include a first reflective layer, a second reflective layer, and a spacer layer disposed between the first reflective layer and the second reflective layer. In some embodiments, the spacer layer may have a thickness of between about 20 nm and 90 nm. The spacer layer may include a bi-metal oxide that may include tin, and may further include one of zinc, aluminum, or magnesium. The spacer layer may have a substantially amorphous structure. Moreover, the spacer layer may have a substantially uniform composition throughout the thickness of the spacer layer. The low emissivity panel may be configured to have a color change as determined by Rg ?E (i.e. as determined on the glass side) that is less than about 1.7 in response to an application of a heat treatment to the low emissivity panel.
    Type: Application
    Filed: March 10, 2014
    Publication date: September 18, 2014
    Applicant: Intermolecular Inc.
    Inventors: Guowen Ding, Jeremy Cheng, Tong Ju, Minh Huu Le, Daniel Schweigert, Zhi-Wen Wen Sun, Yongli Xu, Guizhen Zhang
  • Patent number: 8835961
    Abstract: Devices are described including a first component and a second component, wherein the first component comprises a Group III-N semiconductor and the second component comprises a bimetallic oxide containing tin, having an index of refraction within 15% of the index of refraction of the Group III-N semiconductor, and having negligible extinction coefficient at wavelengths of light emitted or absorbed by the Group III-N semiconductor. The first component is in optical contact with the second component. Exemplary bimetallic oxides include Sn1-xBixO2 where x?0.10, Zn2SnO2, Sn1-xAlxO2 where x?0.18, and Sn1-xMgxO2 where x?0.16. Methods of making and using the devices are also described.
    Type: Grant
    Filed: October 10, 2012
    Date of Patent: September 16, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Philip Kraus, Minh-Huu Le, Sandeep Nijhawan
  • Patent number: 8784934
    Abstract: A transparent dielectric composition comprising tin, oxygen and one of aluminum or magnesium with preferably higher than 15% by weight of aluminum or magnesium offers improved thermal stability over tin oxide with respect to appearance and optical properties under high temperature processes. For example, upon a heat treatment at temperatures higher than 500 C, changes in color and index of refraction of the present transparent dielectric composition are noticeably less than those of tin oxide films of comparable thickness. The transparent dielectric composition can be used in high transmittance, low emissivity coated panels, providing thermal stability so that there are no significant changes in the coating optical and structural properties, such as visible transmission, IR reflectance, microscopic morphological properties, color appearance, and haze characteristics, of the as-coated and heated treated products.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: July 22, 2014
    Assignees: Intermolecular, Inc., Guardian Industries
    Inventors: Mohd Fadzli Anwar Hassan, Richard Blacker, Guowen Ding, Muhammad Imran, Jingyu Lao, Hien Minh Huu Le, Yiwei Lu, Zhi-Wen Sun
  • Patent number: 8778514
    Abstract: A transparent dielectric composition comprising tin, oxygen and one of aluminum or magnesium with preferably higher than 15% by weight of aluminum or magnesium offers improved thermal stability over tin oxide with respect to appearance and optical properties under high temperature processes. For example, upon a heat treatment at temperatures higher than 500 C, changes in color and index of refraction of the present transparent dielectric composition are noticeably less than those of tin oxide films of comparable thickness. The transparent dielectric composition can be used in high transmittance, low emissivity coated panels, providing thermal stability so that there are no significant changes in the coating optical and structural properties, such as visible transmission, IR reflectance, microscopic morphological properties, color appearance, and haze characteristics, of the as-coated and heated treated products.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: July 15, 2014
    Assignees: Intermolecular, Inc., Guardian Industries Corporation
    Inventors: Minh Huu Le, Zhi-Wen Sun, Guowen Ding, Mohd Hassan, Sandeep Jaggi, Muhammad Imran, Jingyu Lao, Yiwei Lu, Richard Blacker
  • Publication number: 20140177042
    Abstract: A method for making low emissivity panels, including control the composition of a barrier layer formed on a thin conductive silver layer. The barrier structure can include an alloy of a first element having high oxygen affinity with a second element having low oxygen affinity. The first element can include Ta, Nb, Zr, Hf, Mn, Y, Si, and Ti, and the second element can include Ru, Ni, Co, Mo, and W, which can have low oxygen affinity property. The alloy barrier layer can reduce optical absorption in the visible range, can provide color-neutral product, and can improve adhesion to the silver layer.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Applicants: GUARDIAN INDUSTRIES CORP., INTERMOLECULAR INC.
    Inventors: Mohd Fadzli Anwar Hassan, Brent Boyce, Guowen Ding, Minh Huu Le, Zhi-Wen Wen Sun, Yu Wang, Yongli Xu
  • Publication number: 20140178578
    Abstract: Provided is High Productivity Combinatorial (HPC) testing methodology of semiconductor substrates, each including multiple site isolated regions. The site isolated regions are used for testing different compositions and/or structures of barrier layers disposed over silver reflectors. The tested barrier layers may include all or at least two of nickel, chromium, titanium, and aluminum. In some embodiments, the barrier layers include oxygen. This combination allows using relative thin barrier layers (e.g., 5-30 Angstroms thick) that have high transparency yet provide sufficient protection to the silver reflector. The amount of nickel in a barrier layer may be 5-10% by weight, chromium ?25-30%, titanium and aluminum ?30%-35% each. The barrier layer may be co-sputtered in a reactive or inert-environment using one or more targets that include all four metals. An article may include multiple silver reflectors, each having its own barrier layer.
    Type: Application
    Filed: December 26, 2012
    Publication date: June 26, 2014
    Applicant: INTERMOLECULAR, INC.
    Inventors: Guizhen Zhang, Jeremy Cheng, Guowen Ding, Minh Huu Le, Daniel Schweigert, Yu Wang
  • Publication number: 20140170413
    Abstract: Methods for making conducting stacks includes forming a doped or alloyed silver layer sandwiched between two layers of transparent conductive oxide such as indium tin oxide (ITO). The doped silver or silver alloy layer can be thin, such as between 1.5 to 20 nm and thus can be transparent. The doped silver or silver alloy can provide improved ductility property, allowing the conductive stack to be bendable. The transparent conductive oxide layers can also be thin, allowing the conductive stack can have improved ductility property.
    Type: Application
    Filed: December 14, 2012
    Publication date: June 19, 2014
    Applicant: INTERMOLECULAR INC.
    Inventors: Mohd Fadzli Anwar Hassan, Guowen Ding, Minh Huu Le, Minh Anh Anh Nguyen, Zhi-Wen Wen Sun, Guizhen Zhang
  • Publication number: 20140170049
    Abstract: A method for forming boron oxide films formed using reactive sputtering. The boron oxide films are candidates as an anti-reflection coating. Boron oxide films with a refractive index of about 1.38 can be formed. The boron oxide films can be formed using power densities between 2 W/cm2 and 11 W/cm2 applied to the target. The oxygen in the reactive sputtering atmosphere can be between 40 volume % and 90 volume %.
    Type: Application
    Filed: December 14, 2012
    Publication date: June 19, 2014
    Applicant: INTERMOLECULAR, INC.
    Inventors: Guowen Ding, Mohd Fadzli Anwar Hassan, Minh Huu Le, Zhi-Wen Sun, Yu Wang
  • Publication number: 20140170422
    Abstract: A method for making low emissivity panels, including forming a base layer to promote a seed layer for a conductive silver layer. The base layer can be an amorphous layer or a nanocrystalline layer, which can facilitate zinc oxide seed layer growth, together with smoother surface and improved thermal stability. The base layer can include doped tin oxide, for example, tin oxide doped with Al, Ga, In, Mg, Ca, Sr, Sb, Bi, Ti, V, Y, Zr, Nb, Hf, Ta, or any combination thereof. The doped tin oxide base layer can influence the growth of (002) crystallographic orientation in zinc oxide, which in turn serves as a seed layer template for silver (111).
    Type: Application
    Filed: December 14, 2012
    Publication date: June 19, 2014
    Applicant: INTERMOLECULAR INC.
    Inventors: Yu Wang, Brent Boyce, Guowen Ding, Mohd Fadzli Anwar Hassan, Minh Huu Le, Haifan Liang, Zhi-Wen Wen Sun
  • Publication number: 20140170308
    Abstract: Embodiments provided herein describe antireflective coatings and methods for forming antireflective coatings. A substrate is provided. A first antireflective layer is formed over the substrate. The first antireflective layer has a first refractive index. A second antireflective layer is formed on the first antireflective layer. The second antireflective layer has a second refractive index. The first antireflective layer and the second antireflective layer jointly form an antireflective coating. The antireflective coating is graded such that the antireflective coating comprises at least three sub-layers, each of the at least three sub-layers having a unique refractive index.
    Type: Application
    Filed: December 13, 2012
    Publication date: June 19, 2014
    Applicant: INTERMOLECULAR INC.
    Inventors: Nikhil Kalyankar, Richard Blacker, Minh Huu Le, Mark Lewis, Liang Liang
  • Publication number: 20140170338
    Abstract: A method for making low emissivity panels, including control the ion characteristics, such as ion energy, ion density and ion to neutral ratio, in a sputter deposition process of a layer deposited on a thin conductive silver layer. The ion control can prevent or minimize degrading the quality of the conductive silver layer, which can lead to better transmittance in visible regime, block more heat transfer from the low emissivity panels, and potentially can reduce the requirements for other layers, so that the overall performance, such as durability, could be improved.
    Type: Application
    Filed: December 14, 2012
    Publication date: June 19, 2014
    Applicant: Intermolecular Inc.
    Inventors: Guowen Ding, Brent Boyce, Mohd Fadzli Anwar Hassan, Minh Huu Le, Zhi-Wen Wen Sun, Yu Wang
  • Publication number: 20140170434
    Abstract: Two layer silver process comprising a silver layer deposited on a doped silver layer can improve the adhesion of the silver layer on a substrate, minimizing agglomeration to provide a high quality silver layer. The doped silver layer can comprise silver and a doping element that has lower enthalpy of formation with oxide than that of silver, leading to better bonding with oxygen in the substrate.
    Type: Application
    Filed: December 14, 2012
    Publication date: June 19, 2014
    Applicant: INTERMOLECULAR INC.
    Inventors: Mohd Fadzli Anwar Hassan, Brent Boyce, Guowen Ding, Minh Huu Le, Zhi-Wen Wen Sun, Yu Wang, Yongli Xu
  • Publication number: 20140166472
    Abstract: A method for making low emissivity panels, comprising cooling the article before or during sputter depositing a coating layer, such as a seed layer or an infrared reflective layer. The cooling process can improve the quality of the infrared reflective layer, which can lead to better transmittance in visible regime, block more heat transfer from the low emissivity panels, and potentially can reduce the requirements for other layers, so that the overall performance, such as durability, could be improved.
    Type: Application
    Filed: December 14, 2012
    Publication date: June 19, 2014
    Applicant: INTERMOLECULAR INC.
    Inventors: Guowen Ding, Brent Boyce, Mohd Fadzli Anwar Hassan, Minh Huu Le, Zhi-Wen Wen Sun, Yu Wang
  • Publication number: 20140170806
    Abstract: Methods are used to develop and evaluate new processes for cleaning and texturing substrates and layers used in HJCS solar cells. In some embodiments, methods are used to develop and evaluate new processes for the deposition of resistive metal oxide interface layers that are formed between the TCO layers and the a-Si:H layers. The resistive metal oxide interface layers form good ohmic contact to the a-Si:H layers. In some embodiments, methods are used to develop and evaluate new processes for the deposition of amorphous TCO layers. The amorphous TCO layers allow improved control over the layer thickness and morphology. In some embodiments, methods are used to develop and evaluate new processes for the deposition of anti-reflection coating materials. The anti-reflection coating materials are selected to decrease the reflectivity of the solar cell and maintain the high conductivity of the TCO materials.
    Type: Application
    Filed: December 18, 2012
    Publication date: June 19, 2014
    Applicant: INTERMOLECULAR, INC.
    Inventors: Jeroen Van Duren, Minh Huu Le
  • Publication number: 20140170421
    Abstract: Embodiments provided herein describe low-e panels and methods for forming low-e panels. A transparent substrate is provided. A reflective layer is formed above the transparent substrate. A titanium-yttrium oxide layer is deposited above the transparent substrate, or above the transparent substrate and the reflective layer, which may enhance optical performance.
    Type: Application
    Filed: December 14, 2012
    Publication date: June 19, 2014
    Applicant: INTERMOLECULAR INC.
    Inventors: Guowen Ding, Brent Boyce, Minh Huu Le, Zhi-Wen Wen Sun, Yu Wang, Yongli Xu
  • Publication number: 20140168759
    Abstract: A method for making low emissivity panels, comprising forming a patterned layer on a transparent substrate. The patterned layers can offer different color schemes or different decorative appearance styles for the coated panels, or can offer gradable thermal efficiency through the patterned layers.
    Type: Application
    Filed: December 14, 2012
    Publication date: June 19, 2014
    Applicant: INTERMOLECULAR INC.
    Inventors: Minh Huu Le, Brent Boyce, Guowen Ding, Mohd Fadzli Anwar Hassan, Zhi-Wen Wen Sun
  • Publication number: 20140161990
    Abstract: Methods for depositing layers by PVD, wherein the PVD process parameters are selected to impart porosity in the layer are described. The porous layers are then exposed to a vapor or liquid binder material to fill the pores and increase the mechanical strength of the layer and the adhesion of the layer. Optionally, a curing step may be applied to the layer. Methods for depositing polycrystalline metal oxide layers using PVD or CVD are described. Optionally, the layers are exposed to an anneal step. The polycrystalline metal oxide layers are then exposed to a vapor or liquid texturing reagent to texture the surface of the layer.
    Type: Application
    Filed: December 12, 2012
    Publication date: June 12, 2014
    Applicant: INTERMOLECULAR, INC.
    Inventors: Nikhil Kalyankar, Scott Jewhurst, Minh Huu Le
  • Publication number: 20140161989
    Abstract: Methods for forming anti-glare coatings including forming a layer using a sol-gel process are described. The layer further includes at least one of porogens, nanoparticles, or photosensitive macromolecules. The porogens, nanoparticles, or photosensitive macromolecules are removed using a thermal treatment or UV treatment to impart porosity and surface roughness to the layer. Alternatively, the layer may be roughened using a mechanical process. The layer can optionally be subjected to a curing step. The curing step may be a thermal curing process or a chemical curing process.
    Type: Application
    Filed: December 12, 2012
    Publication date: June 12, 2014
    Applicant: INTERMOLECULAR, INC.
    Inventors: Nikhil Kalyankar, Scott Jewhurst, Minh Huu Le
  • Patent number: 8747626
    Abstract: A method for forming and protecting high quality bismuth oxide films comprises depositing a transparent thin film on a substrate comprising one of Si, alkali metals, or alkaline earth metals. The transparent thin film is stable at room temperature and at higher temperatures and serves as a diffusion barrier for the diffusion of impurities from the substrate into the bismuth oxide. Reactive sputtering, sputtering from a compound target, or reactive evaporation are used to deposit a bismuth oxide film above the diffusion barrier.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: June 10, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Guowen Ding, Mohd Fadzli Anwar Hassan, Hien Minh Huu Le, Zhi-Wen Sun
  • Publication number: 20140124725
    Abstract: Provided are semiconductor devices, such as resistive random access memory (ReRAM) cells, that include current limiting layers formed from doped metal oxides and/or nitrides. These current limiting layers may have resistivities of at least about 1 Ohm-cm. This resistivity level is maintained even when the layers are subjected to strong electrical fields and/or high temperature annealing. In some embodiments, the breakdown voltage of a current limiting layer may be at least about 8V. Some examples of such current limiting layers include titanium oxide doped with niobium, tin oxide doped with antimony, and zinc oxide doped with aluminum. Dopants and base materials may be deposited as separate sub-layers and then redistributed by annealing or may be co-deposited using reactive sputtering or co-sputtering. The high resistivity of the layers allows scaling down the size of the semiconductor devices including these layer while maintaining their performance.
    Type: Application
    Filed: November 8, 2012
    Publication date: May 8, 2014
    Applicant: INTERMOLECULAR, INC.
    Inventors: David Chi, Vidyut Gopal, Minh Huu Le, Minh Anh Nguyen, Dipankar Pramanik, Milind Weling