Patents by Inventor Mirko Hattass

Mirko Hattass has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9791275
    Abstract: A method for calibrating a selected yaw rate sensor includes: determining a scaling function between a yaw rate sensitivity and a test signal sensitivity of a yaw rate sensor selected for carrying out a test and denoted as first sampling yaw rate sensor is determined in a first method step, the scaling function being determined from a measured first sample yaw rate sensitivity and from a measured first sample test signal sensitivity of the sampling yaw rate sensor; calculating a production yaw rate sensitivity for a yaw rate sensor denoted as production yaw rate sensor from a measured production test signal sensitivity of the production yaw rate sensor and the scaling function; and subsequently calibrating the production yaw rate sensor with the aid of the production yaw rate sensitivity.
    Type: Grant
    Filed: October 21, 2013
    Date of Patent: October 17, 2017
    Assignee: ROBERT BOSCH GMBH
    Inventors: Axel Franke, Mirko Hattass
  • Patent number: 9650240
    Abstract: Measures are provided for improving and simplifying metallic bonding processes which enable a reliable initiation of the bonding process and thus contribute to a uniform bonding. The present method provides a further option for using bonding layers. The method in the case of which the two semiconductor elements are bonded to one another via a bond of at least one metallic starting layer and at least one further starting layer provides that the two starting layers are structured in such a way that the layer areas which are assigned to one another have differently sized areal extents. Moreover, the layer thicknesses of the two starting layers should be selected in such a way that the layer areas which are assigned to one another meet the material ratio necessary for the bonding process.
    Type: Grant
    Filed: June 4, 2015
    Date of Patent: May 16, 2017
    Assignee: Robert Bosch GmbH
    Inventors: Mirko Hattass, Heiko Stahl, Jochen Reinmuth, Julian Gonska, Johannes Classen
  • Publication number: 20170096331
    Abstract: Measures are described which contribute simply and reliably to the mechanical decoupling of a MEMS functional element from the structure of a MEMS element. The MEMS element includes at least one deflectable functional element, which is implemented in a layered structure on a MEMS substrate, so that a space exists between the layered structure and the MEMS substrate, at least in the area of the functional element. According to the invention, a stress decoupling structure is formed in the MEMS substrate in the form of a blind hole-like trench structure, which is open to the space between the layered structure and the MEMS substrate and extends into the MEMS substrate to only a predefined depth, so that the rear side of the MEMS substrate is closed, at least in the area of the trench structure.
    Type: Application
    Filed: May 29, 2015
    Publication date: April 6, 2017
    Inventors: Johannes Classen, Jochen Reinmuth, Mirko Hattass, Ralf Reichenbach, Antoine Puygranier
  • Publication number: 20170081177
    Abstract: An interposer is provided which is made up of a flat carrier substrate including at least one front wiring plane, in which front terminal pads are formed for mounting a component on the interposer, including at least one rear wiring plane, in which rear terminal pads are formed for mounting on a component carrier, the front terminal pads and the rear terminal pads being arranged offset from each other; and including vias for electrical connection of the at least one front wiring plane and the at least one rear wiring plane. The carrier substrate includes at least one edge section and at least one center section, which are at least largely mechanically decoupled via a stress-decoupling structure. The front terminal pads are arranged exclusively on the center section for mounting the component, while the rear terminal pads are arranged exclusively on the edge section for mounting on a component carrier.
    Type: Application
    Filed: May 29, 2015
    Publication date: March 23, 2017
    Applicant: Robert Bosch GmbH
    Inventors: Reinhard Neul, Johannes Classen, Torsten Kramer, Jochen Reinmuth, Mirko Hattass, Lars Tebje, Daniel Christoph Meisel, Ralf Reichenbach, Friedjof Heuck, Antoine Puygranier
  • Publication number: 20170059323
    Abstract: A method for operating a rotational rate sensor having a substrate and at least one structure movable relative thereto, at least one first and at least one fourth electrodes fastened to the structure, and at least one second, at least one third, at least one fifth, and at least one sixth electrodes fixed to the substrate, the first electrode being situated at least partially between second and third electrodes, the fourth electrode being situated at least partially between fifth and sixth electrodes, in each case in a rest position of the structure and along a direction essentially parallel to a first axis, the structure being excited, in a first task, from a rest position of the structure to an oscillation having a movement component essentially parallel to a second axis running perpendicular to the first axis during at least one first time interval within at least one oscillation period.
    Type: Application
    Filed: August 24, 2016
    Publication date: March 2, 2017
    Inventors: Mirko HATTASS, Odd-Axel PRUETZ
  • Publication number: 20170016726
    Abstract: A multiaxial rotation rate sensor for detecting rotation rates on three mutually perpendicular rotation axes.
    Type: Application
    Filed: July 8, 2016
    Publication date: January 19, 2017
    Inventors: Mirko Hattass, David Csima, Thorsten Balslink
  • Publication number: 20160356599
    Abstract: A sensor drive includes at least one first seismic mass and an operating apparatus. The operating apparatus is configured to put the first seismic mass into oscillatory motion such that (i) a projection of the oscillatory motion of the first seismic mass onto a first spatial direction is a first harmonic oscillation of the first seismic mass at a first frequency, and (ii) a projection of the oscillatory motion of the first seismic mass onto a second spatial direction oriented at an angle to the first spatial direction is a second harmonic oscillation of the first seismic mass at a second frequency not equal to the first frequency. A method includes operating such a sensor device having at least one seismic mass.
    Type: Application
    Filed: January 21, 2015
    Publication date: December 8, 2016
    Inventors: Robert Maul, Mirko Hattass, Rolf Scheben
  • Patent number: 9434606
    Abstract: A micromechanical inertial sensor includes an ASIC element having a processed front side, an MEMS element having a micromechanical sensor structure, and a cap wafer mounted above the micromechanical sensor structure, which sensor structure includes a seismic mass and extends over the entire thickness of the MEMS substrate. The MEMS element is mounted on the processed front side of the ASIC element above a standoff structure and is electrically connected to the ASIC element via through-contacts in the MEMS substrate and in adjacent supports of the standoff structure. A blind hole is formed in the MEMS substrate in the area of the seismic mass, which blind hole is filled with the same electrically conductive material as the through-contacts, the conductive material having a greater density than the MEMS substrate.
    Type: Grant
    Filed: May 9, 2013
    Date of Patent: September 6, 2016
    Assignee: ROBERT BOSCH GMBH
    Inventors: Johannes Classen, Mirko Hattass, Daniel Christoph Meisel
  • Publication number: 20160138666
    Abstract: A micromechanical spring for an inertial sensor, including segments of a monocrystalline base material, the segments having surfaces which are situated at a right angle to one another with respect to a plane of oscillation of the spring and normal to the plane of oscillation of the spring, the segments being manufactured in a crystal-direction-dependent etching process and each having two different orientations normal to the plane of oscillation, in which the spring includes a defined number of segments situated in a defined manner.
    Type: Application
    Filed: October 27, 2015
    Publication date: May 19, 2016
    Inventors: Christian HOEPPNER, Benjamin Schmidt, Mirko Hattass, Odd-Axel Pruetz, Robert Maul, Friedjof Heuck, Rolf Scheben, Torsten Ohms, Reinhard Neul
  • Publication number: 20160084653
    Abstract: A rotation rate sensor for detecting a rotational movement of the rotation rate sensor about a rotational axis extending within a drive plane of the rotation rate sensor include: a first rotational element, a second rotational element and a drive structure moveable in parallel to the drive plane, the first rotational element being drivable about a first center of rotation to achieve a first rotational vibration in parallel to the drive plane, the second rotational element being drivable about a second center of rotation to achieve a second rotational vibration in parallel to the drive plane, the drive structure being (i) coupled to the first and second rotational elements, and (ii) configured to generate a drive mode in phase opposition of the first and second rotational vibrations.
    Type: Application
    Filed: May 5, 2014
    Publication date: March 24, 2016
    Inventors: Thorsten Balslink, Rolf Scheben, Benjamin Schmidt, Ralf Ameling, Mirko Hattass, Burkhard Kuhlmann, Robert Maul
  • Publication number: 20160069682
    Abstract: A rotation-rate sensor having a substrate with main extension plane, for detecting a rotation rate, extending in a direction parallel/orthogonal to the main plane; the sensor including a primary/secondary pair of seismic masses; the primary pair having first/second primary masses; the secondary pair having first/second secondary masses; the first/second primary masses being movable relative to the substrate along a primary deflection direction extending parallel to the main plane; the first/second secondary masses being movable relative to the substrate along a secondary deflection direction extending parallel to the main plane; the first/second primary masses and the first/second primary masses being movable antiparallel or parallel to one another corresponding to the deflection direction, essentially extending orthogonally to the secondary deflection direction; and the primary pair and/or secondary pair being drivable so that, based on sensor rotation, the Coriolis force leads to deflection of the first/sec
    Type: Application
    Filed: May 14, 2014
    Publication date: March 10, 2016
    Inventors: Thorsten BALSLINK, Rolf SCHEBEN, Benjamin SCHMIDT, Ralf AMELING, Mirko HATTASS, Burkhard KUHLMANN, Robert MAUL
  • Patent number: 9266720
    Abstract: A component has at least one MEMS element and at least one cap made of a semiconductor material. The cap, in addition to its mechanical function as a terminus of a cavity and protection of the micromechanical structure, is provided with an electrical functionality. The micromechanical structure of the MEMS element of the component is situated in a cavity between a carrier and the cap, and includes at least one structural element which is deflectable out of the component plane within the cavity. The cap includes at least one section extending over the entire thickness of the cap, which is electrically insulated from the adjoining semiconductor material in such a way that it may be electrically contacted independently from the remaining sections of the cap.
    Type: Grant
    Filed: October 21, 2013
    Date of Patent: February 23, 2016
    Assignee: ROBERT BOSCH GMBH
    Inventors: Johannes Classen, Axel Franke, Jens Frey, Heribert Weber, Frank Fischer, Patrick Wellner, Mirko Hattass, Daniel Christoph Meisel
  • Patent number: 9233841
    Abstract: A production process for a micromechanical component includes at least partially structuring at least one structure from at least one monocrystalline silicon layer by at least performing a crystal-orientation-dependent etching step on an upper side of the silicon layer with a given (110) surface orientation of the silicon layer. For the at least partial structuring of the at least one structure, at least one crystal-orientation-independent etching step is additionally performed on the upper side of the silicon layer with the given (110) surface orientation of the silicon layer.
    Type: Grant
    Filed: October 14, 2013
    Date of Patent: January 12, 2016
    Assignee: Robert Bosch GmbH
    Inventors: Friedjof Heuck, Christoph Schelling, Mirko Hattass, Benjamin Schmidt
  • Patent number: 9212048
    Abstract: A hybridly integrated component includes an ASIC element having a processed front side, a first MEMS element having a micromechanical structure extending over the entire thickness of the first MEMS substrate, and a first cap wafer mounted over the micromechanical structure of the first MEMS element. At least one structural element of the micromechanical structure of the first MEMS element is deflectable, and the first MEMS element is mounted on the processed front side of the ASIC element such that a gap exists between the micromechanical structure and the ASIC element. A second MEMS element is mounted on the rear side of the ASIC element. The micromechanical structure of the second MEMS element extends over the entire thickness of the second MEMS substrate and includes at least one deflectable structural element.
    Type: Grant
    Filed: May 9, 2013
    Date of Patent: December 15, 2015
    Assignee: ROBERT BOSCH GMBH
    Inventors: Johannes Classen, Heribert Weber, Mirko Hattass, Daniel Christoph Meisel
  • Publication number: 20150353349
    Abstract: Measures are provided for improving and simplifying metallic bonding processes which enable a reliable initiation of the bonding process and thus contribute to a uniform bonding. The present method provides a further option for using bonding layers. The method in the case of which the two semiconductor elements are bonded to one another via a bond of at least one metallic starting layer and at least one further starting layer provides that the two starting layers are structured in such a way that the layer areas which are assigned to one another have differently sized areal extents. Moreover, the layer thicknesses of the two starting layers should be selected in such a way that the layer areas which are assigned to one another meet the material ratio necessary for the bonding process.
    Type: Application
    Filed: June 4, 2015
    Publication date: December 10, 2015
    Inventors: Mirko HATTASS, Heiko STAHL, Jochen REINMUTH, Julian GONSKA, Johannes CLASSEN
  • Publication number: 20150353345
    Abstract: Method for on-chip stress decoupling to reduce stresses in a vertical hybrid integrated component including MEMS and ASIC elements and to mechanical decoupling of the MEMS structure. The MEMS/ASIC elements are mounted above each other via at least one connection layer and form a chip stack. On the assembly side, at least one connection area is formed for the second level assembly and for external electrical contacting of the component on a component support. At least one flexible stress decoupling structure is formed in one element surface between the assembly side and the MEMS layered structure including the stress-sensitive MEMS structure, in at least one connection area to the adjacent element component of the chip stack or to the component support, the stress decoupling structure being configured so that the connection material does not penetrate into the stress decoupling structure and flexibility of the stress decoupling structure is ensured.
    Type: Application
    Filed: June 5, 2015
    Publication date: December 10, 2015
    Inventors: Friedjof HEUCK, Ralf REICHENBACH, Daniel Christoph MEISEL, Lars TEBJE, Mirko HATTASS, Jochen REINMUTH, Torsten KRAMER, Johannes CLASSEN, Reinhard NEUL, Antoine PUYGRANIER
  • Patent number: 9164123
    Abstract: The disclosure relates to a micromechanical rotary acceleration sensor including a substrate with at least one anchoring device and at least two flywheel masses. At least one of the flywheel masses is connected to at least one anchoring device by means of a coupling element. The at least one anchoring device is designed in such a manner that the at least two flywheel masses are elastically deflectable from a respective rest position about at least one axis of rotation. The at least two flywheel masses is designed in such a manner that they have different natural frequencies.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: October 20, 2015
    Assignee: Robert Bosch GmbH
    Inventors: Reinhard Neul, Torsten Ohms, Mirko Hattass, Daniel Christoph Meisel
  • Patent number: 9112108
    Abstract: An energy source for supplying an autonomous electrical load system with electrical energy includes a thermogenerator device configured to generate a thermoelectric voltage to be fed to the electrical load system. The thermogenerator device is under the influence of a temperature difference between a warmer first thermal coupling device and a colder second thermal coupling device. The energy source further includes a microfluidic cooling device having a heat-absorption region, a heat-emission region, and a closed microfluidic circulation system configured to circulate a fluid between the heat-absorption region and the heat-emission region. The heat-absorption region has a thermally conductive connection to the second thermal coupling device.
    Type: Grant
    Filed: April 29, 2013
    Date of Patent: August 18, 2015
    Assignee: Robert Bosch GmbH
    Inventors: Rolf Scheben, Mirko Hattass
  • Publication number: 20150137300
    Abstract: An infrared sensor device includes a semiconductor substrate, at least one sensor element that is micromechanically formed in the semiconductor substrate, and at least one calibration element, which is micromechanically formed in the semiconductor substrate, for the sensor element. An absorber material is arranged on the semiconductor substrate in the area of the sensor element and the calibration element. One cavern each is formed in the semiconductor substrate substantially below the sensor element and substantially below the calibration element. The sensor element and the calibration element are thermally and electrically isolated from the rest of the semiconductor substrate by the caverns. The infrared sensor device has high sensitivity, calibration functionality for the sensor element, and a high signal-to-noise ratio.
    Type: Application
    Filed: April 19, 2013
    Publication date: May 21, 2015
    Inventors: Ingo Herrmann, Edda Sommer, Christoph Schelling, Christian Rettig, Mirko Hattass
  • Patent number: 8955380
    Abstract: A micromechanical rotation rate sensor, in particular for use in motor vehicles, includes a substrate, at least one seismic mass, which is arranged in a sprung manner on the substrate, drive means for production of a periodic movement of the seismic mass, force detection means for detection of a Coriolis force, which acts on the seismic mass as a result of rotation about a rotation axis which is at right angles to the excitation direction, and measurement means, wherein the measurement means are designed for measurement of structural deviations of the rotation rate sensor.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: February 17, 2015
    Assignee: Robert Bosch GmbH
    Inventors: Mirko Hattass, Benjamin Schmidt