Patents by Inventor Mirko Hattass

Mirko Hattass has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160084653
    Abstract: A rotation rate sensor for detecting a rotational movement of the rotation rate sensor about a rotational axis extending within a drive plane of the rotation rate sensor include: a first rotational element, a second rotational element and a drive structure moveable in parallel to the drive plane, the first rotational element being drivable about a first center of rotation to achieve a first rotational vibration in parallel to the drive plane, the second rotational element being drivable about a second center of rotation to achieve a second rotational vibration in parallel to the drive plane, the drive structure being (i) coupled to the first and second rotational elements, and (ii) configured to generate a drive mode in phase opposition of the first and second rotational vibrations.
    Type: Application
    Filed: May 5, 2014
    Publication date: March 24, 2016
    Inventors: Thorsten Balslink, Rolf Scheben, Benjamin Schmidt, Ralf Ameling, Mirko Hattass, Burkhard Kuhlmann, Robert Maul
  • Publication number: 20160069682
    Abstract: A rotation-rate sensor having a substrate with main extension plane, for detecting a rotation rate, extending in a direction parallel/orthogonal to the main plane; the sensor including a primary/secondary pair of seismic masses; the primary pair having first/second primary masses; the secondary pair having first/second secondary masses; the first/second primary masses being movable relative to the substrate along a primary deflection direction extending parallel to the main plane; the first/second secondary masses being movable relative to the substrate along a secondary deflection direction extending parallel to the main plane; the first/second primary masses and the first/second primary masses being movable antiparallel or parallel to one another corresponding to the deflection direction, essentially extending orthogonally to the secondary deflection direction; and the primary pair and/or secondary pair being drivable so that, based on sensor rotation, the Coriolis force leads to deflection of the first/sec
    Type: Application
    Filed: May 14, 2014
    Publication date: March 10, 2016
    Inventors: Thorsten BALSLINK, Rolf SCHEBEN, Benjamin SCHMIDT, Ralf AMELING, Mirko HATTASS, Burkhard KUHLMANN, Robert MAUL
  • Patent number: 9266720
    Abstract: A component has at least one MEMS element and at least one cap made of a semiconductor material. The cap, in addition to its mechanical function as a terminus of a cavity and protection of the micromechanical structure, is provided with an electrical functionality. The micromechanical structure of the MEMS element of the component is situated in a cavity between a carrier and the cap, and includes at least one structural element which is deflectable out of the component plane within the cavity. The cap includes at least one section extending over the entire thickness of the cap, which is electrically insulated from the adjoining semiconductor material in such a way that it may be electrically contacted independently from the remaining sections of the cap.
    Type: Grant
    Filed: October 21, 2013
    Date of Patent: February 23, 2016
    Assignee: ROBERT BOSCH GMBH
    Inventors: Johannes Classen, Axel Franke, Jens Frey, Heribert Weber, Frank Fischer, Patrick Wellner, Mirko Hattass, Daniel Christoph Meisel
  • Patent number: 9233841
    Abstract: A production process for a micromechanical component includes at least partially structuring at least one structure from at least one monocrystalline silicon layer by at least performing a crystal-orientation-dependent etching step on an upper side of the silicon layer with a given (110) surface orientation of the silicon layer. For the at least partial structuring of the at least one structure, at least one crystal-orientation-independent etching step is additionally performed on the upper side of the silicon layer with the given (110) surface orientation of the silicon layer.
    Type: Grant
    Filed: October 14, 2013
    Date of Patent: January 12, 2016
    Assignee: Robert Bosch GmbH
    Inventors: Friedjof Heuck, Christoph Schelling, Mirko Hattass, Benjamin Schmidt
  • Patent number: 9212048
    Abstract: A hybridly integrated component includes an ASIC element having a processed front side, a first MEMS element having a micromechanical structure extending over the entire thickness of the first MEMS substrate, and a first cap wafer mounted over the micromechanical structure of the first MEMS element. At least one structural element of the micromechanical structure of the first MEMS element is deflectable, and the first MEMS element is mounted on the processed front side of the ASIC element such that a gap exists between the micromechanical structure and the ASIC element. A second MEMS element is mounted on the rear side of the ASIC element. The micromechanical structure of the second MEMS element extends over the entire thickness of the second MEMS substrate and includes at least one deflectable structural element.
    Type: Grant
    Filed: May 9, 2013
    Date of Patent: December 15, 2015
    Assignee: ROBERT BOSCH GMBH
    Inventors: Johannes Classen, Heribert Weber, Mirko Hattass, Daniel Christoph Meisel
  • Publication number: 20150353345
    Abstract: Method for on-chip stress decoupling to reduce stresses in a vertical hybrid integrated component including MEMS and ASIC elements and to mechanical decoupling of the MEMS structure. The MEMS/ASIC elements are mounted above each other via at least one connection layer and form a chip stack. On the assembly side, at least one connection area is formed for the second level assembly and for external electrical contacting of the component on a component support. At least one flexible stress decoupling structure is formed in one element surface between the assembly side and the MEMS layered structure including the stress-sensitive MEMS structure, in at least one connection area to the adjacent element component of the chip stack or to the component support, the stress decoupling structure being configured so that the connection material does not penetrate into the stress decoupling structure and flexibility of the stress decoupling structure is ensured.
    Type: Application
    Filed: June 5, 2015
    Publication date: December 10, 2015
    Inventors: Friedjof HEUCK, Ralf REICHENBACH, Daniel Christoph MEISEL, Lars TEBJE, Mirko HATTASS, Jochen REINMUTH, Torsten KRAMER, Johannes CLASSEN, Reinhard NEUL, Antoine PUYGRANIER
  • Publication number: 20150353349
    Abstract: Measures are provided for improving and simplifying metallic bonding processes which enable a reliable initiation of the bonding process and thus contribute to a uniform bonding. The present method provides a further option for using bonding layers. The method in the case of which the two semiconductor elements are bonded to one another via a bond of at least one metallic starting layer and at least one further starting layer provides that the two starting layers are structured in such a way that the layer areas which are assigned to one another have differently sized areal extents. Moreover, the layer thicknesses of the two starting layers should be selected in such a way that the layer areas which are assigned to one another meet the material ratio necessary for the bonding process.
    Type: Application
    Filed: June 4, 2015
    Publication date: December 10, 2015
    Inventors: Mirko HATTASS, Heiko STAHL, Jochen REINMUTH, Julian GONSKA, Johannes CLASSEN
  • Patent number: 9164123
    Abstract: The disclosure relates to a micromechanical rotary acceleration sensor including a substrate with at least one anchoring device and at least two flywheel masses. At least one of the flywheel masses is connected to at least one anchoring device by means of a coupling element. The at least one anchoring device is designed in such a manner that the at least two flywheel masses are elastically deflectable from a respective rest position about at least one axis of rotation. The at least two flywheel masses is designed in such a manner that they have different natural frequencies.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: October 20, 2015
    Assignee: Robert Bosch GmbH
    Inventors: Reinhard Neul, Torsten Ohms, Mirko Hattass, Daniel Christoph Meisel
  • Patent number: 9112108
    Abstract: An energy source for supplying an autonomous electrical load system with electrical energy includes a thermogenerator device configured to generate a thermoelectric voltage to be fed to the electrical load system. The thermogenerator device is under the influence of a temperature difference between a warmer first thermal coupling device and a colder second thermal coupling device. The energy source further includes a microfluidic cooling device having a heat-absorption region, a heat-emission region, and a closed microfluidic circulation system configured to circulate a fluid between the heat-absorption region and the heat-emission region. The heat-absorption region has a thermally conductive connection to the second thermal coupling device.
    Type: Grant
    Filed: April 29, 2013
    Date of Patent: August 18, 2015
    Assignee: Robert Bosch GmbH
    Inventors: Rolf Scheben, Mirko Hattass
  • Publication number: 20150137300
    Abstract: An infrared sensor device includes a semiconductor substrate, at least one sensor element that is micromechanically formed in the semiconductor substrate, and at least one calibration element, which is micromechanically formed in the semiconductor substrate, for the sensor element. An absorber material is arranged on the semiconductor substrate in the area of the sensor element and the calibration element. One cavern each is formed in the semiconductor substrate substantially below the sensor element and substantially below the calibration element. The sensor element and the calibration element are thermally and electrically isolated from the rest of the semiconductor substrate by the caverns. The infrared sensor device has high sensitivity, calibration functionality for the sensor element, and a high signal-to-noise ratio.
    Type: Application
    Filed: April 19, 2013
    Publication date: May 21, 2015
    Inventors: Ingo Herrmann, Edda Sommer, Christoph Schelling, Christian Rettig, Mirko Hattass
  • Patent number: 8955380
    Abstract: A micromechanical rotation rate sensor, in particular for use in motor vehicles, includes a substrate, at least one seismic mass, which is arranged in a sprung manner on the substrate, drive means for production of a periodic movement of the seismic mass, force detection means for detection of a Coriolis force, which acts on the seismic mass as a result of rotation about a rotation axis which is at right angles to the excitation direction, and measurement means, wherein the measurement means are designed for measurement of structural deviations of the rotation rate sensor.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: February 17, 2015
    Assignee: Robert Bosch GmbH
    Inventors: Mirko Hattass, Benjamin Schmidt
  • Patent number: 8950258
    Abstract: A micromechanical angular acceleration sensor for measuring an angular acceleration is disclosed. The sensor includes a substrate, a seismic mass, at least one suspension, which fixes the seismic mass to the substrate in a deflectable manner, and at least one piezoresistive and/or piezoelectric element for measuring the angular acceleration. The piezoresistive and/or piezoelectric element is arranged in a cutout of the seismic mass. A corresponding method and uses of the sensor are also disclosed.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: February 10, 2015
    Assignee: Robert Bosch GmbH
    Inventors: Reinhard Neul, Torsten Ohms, Mirko Hattass, Daniel Christoph Meisel
  • Patent number: 8901679
    Abstract: A micromechanical structure, in particular a sensor arrangement, includes at least one micromechanical functional layer, a CMOS substrate region arranged below the at least one micromechanical functional layer, and an arrangement of one or more contact elements. The CMOS substrate region has at least one configurable circuit arrangement. The arrangement of one or more contact elements is arranged between the at least one micromechanical functional layer and the CMOS substrate region and is electrically connected to the micromechanical functional layer and the circuit arrangement. The configurable circuit arrangement is designed in such a way that the one or more contact elements are configured to be selectively connected to electrical connection lines in the CMOS substrate region.
    Type: Grant
    Filed: July 16, 2013
    Date of Patent: December 2, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Johannes Classen, Mirko Hattass, Lars Tebje, Daniel Christoph Meisel
  • Patent number: 8833135
    Abstract: A sensor system having a substrate and a mass which is movably suspended relative to the substrate is described, the sensor system including detection arrangement for detecting a deflection of the seismic mass relative to the substrate along a deflection direction, the detection arrangement including a first measuring electrode affixed to the substrate and a second measuring electrode affixed to the substrate, and a first overlap, which is perpendicular to the deflection direction, between the first measuring electrode and the seismic mass along the deflection direction is greater than a second overlap, which is perpendicular to the deflection direction, between the second measuring electrode and the seismic mass.
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: September 16, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Axel Franke, Mirko Hattass, Alexander Buhmann, Marian Keck
  • Patent number: 8836053
    Abstract: A component system includes at least one MEMS element, a cap for a micromechanical structure of the MEMS element, and at least one ASIC substrate. The micromechanical structure of the MEMS element is implemented in the functional layer of an SOI wafer. The MEMS element is mounted face down, with the structured functional layer on the ASIC substrate, and the cap is implemented in the substrate of the SOI wafer. The ASIC substrate includes a starting substrate provided with a layered structure on both sides. At least one circuit level is implemented in each case both in the MEMS-side layered structure and in the rear-side layered structure of the ASIC substrate. In the ASIC substrate, at least one ASIC through contact is implemented which electrically contacts at least one circuit level of the rear-side layered structure and/or at least one circuit level of the MEMS-side layered structure.
    Type: Grant
    Filed: May 9, 2013
    Date of Patent: September 16, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Heribert Weber, Frank Fischer, Mirko Hattass, Yvonne Bergmann
  • Publication number: 20140117475
    Abstract: A component has at least one MEMS element and at least one cap made of a semiconductor material. The cap, in addition to its mechanical function as a terminus of a cavity and protection of the micromechanical structure, is provided with an electrical functionality. The micromechanical structure of the MEMS element of the component is situated in a cavity between a carrier and the cap, and includes at least one structural element which is deflectable out of the component plane within the cavity. The cap includes at least one section extending over the entire thickness of the cap, which is electrically insulated from the adjoining semiconductor material in such a way that it may be electrically contacted independently from the remaining sections of the cap.
    Type: Application
    Filed: October 21, 2013
    Publication date: May 1, 2014
    Applicant: Robert Bosch GmbH
    Inventors: Johannes CLASSEN, Axel FRANKE, Jens FREY, Heribert WEBER, Frank FISCHER, Patrick WELLNER, Mirko HATTASS, Daniel Christoph MEISEL
  • Publication number: 20140116108
    Abstract: A method for calibrating a selected yaw rate sensor includes: determining a scaling function between a yaw rate sensitivity and a test signal sensitivity of a yaw rate sensor selected for carrying out a test and denoted as first sampling yaw rate sensor is determined in a first method step, the scaling function being determined from a measured first sample yaw rate sensitivity and from a measured first sample test signal sensitivity of the sampling yaw rate sensor; calculating a production yaw rate sensitivity for a yaw rate sensor denoted as production yaw rate sensor from a measured production test signal sensitivity of the production yaw rate sensor and the scaling function; and subsequently calibrating the production yaw rate sensor with the aid of the production yaw rate sensitivity.
    Type: Application
    Filed: October 21, 2013
    Publication date: May 1, 2014
    Applicant: ROBERT BOSCH GMBH
    Inventors: Axel FRANKE, Mirko HATTASS
  • Patent number: 8711459
    Abstract: A micromechanical component includes a micromechanical unidimensional optical lattice structure for diffracting an incident light beam, and a linear drive connected to the lattice structure for compressing and/or stretching the lattice structure in the plane of the lattice structure. The lattice structure is of elastic design with regard to a change of shape resulting from the compressing and/or stretching. The micromechanical component may be incorporated in a device for beam deflection of monochromatic light or in a spectrometer.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: April 29, 2014
    Assignee: Robert Bosch GmbH
    Inventor: Mirko Hattass
  • Publication number: 20140103497
    Abstract: A production process for a micromechanical component includes at least partially structuring at least one structure from at least one monocrystalline silicon layer by at least performing a crystal-orientation-dependent etching step on an upper side of the silicon layer with a given (110) surface orientation of the silicon layer. For the at least partial structuring of the at least one structure, at least one crystal-orientation-independent etching step is additionally performed on the upper side of the silicon layer with the given (110) surface orientation of the silicon layer.
    Type: Application
    Filed: October 14, 2013
    Publication date: April 17, 2014
    Applicant: Robert Bosch GmbH
    Inventors: Friedjof Heuck, Christoph Schelling, Mirko Hattass, Benjamin Schmidt
  • Publication number: 20140102196
    Abstract: An acceleration sensor includes a circuit board with a recess that exposes a spring structure. The spring structure is formed from a material of the circuit board exposed by the recess and includes a vibrating element that is held in a resilient manner via at least one spring element. The sensor further includes a reference element connected rigidly to the circuit board and arranged at a distance from and opposite the vibrating element, an electrical circuit arranged on the vibrating element at a distance from the reference element, and at least one detection element. The circuit is configured to evaluate a signal that is configured to be influenced by a change in distance between the reference element and the at least one detection element in order to sense an acceleration of the acceleration sensor.
    Type: Application
    Filed: October 17, 2013
    Publication date: April 17, 2014
    Applicant: Robert Bosch GmbH
    Inventors: Remigius Has, Mirko Hattass, Frederik Ante