Patents by Inventor Mirzafer Abatchev

Mirzafer Abatchev has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070049028
    Abstract: A method for forming a template useful for nanoimprint lithography comprises forming at least one pillar which provides a topographic feature extending from a template base. At least one conformal pattern layer and one conformal spacing layer, and generally a plurality of alternating pattern layers and spacing layers, are formed over the template base and pillar. A planarized filler layer is formed over the pattern and spacing layers, then the filler, the spacing layer and the pattern layer are partially removed, for example using mechanical polishing, to expose the pillar. One or more etches are performed to remove at least a portion of the pillar, the filler, and the spacing layer to result in the pattern layer protruding from the spacing layer and providing the template pattern.
    Type: Application
    Filed: August 30, 2005
    Publication date: March 1, 2007
    Inventors: Krupakar Subramanian, Mirzafer Abatchev
  • Publication number: 20070049032
    Abstract: Various pattern transfer and etching steps can be used to create features. Conventional photolithography steps can be used in combination with pitch-reduction techniques to form superimposed, pitch-reduced patterns of crossing elongate features that can be consolidated into a single layer. Planarizing techniques using a filler layer and a protective layer are disclosed. Portions of an integrated circuit having different heights can be etched to a common plane.
    Type: Application
    Filed: September 1, 2005
    Publication date: March 1, 2007
    Inventors: Mirzafer Abatchev, David Wells, Baosuo Zhou, Krupakar Subramanian
  • Publication number: 20070042605
    Abstract: The invention includes methods of etching substrates, methods of forming features on substrates, and methods of depositing a layer comprising silicon, carbon and fluorine onto a semiconductor substrate. In one implementation, a method of etching includes forming a masking feature projecting from a substrate. The feature has a top, opposing sidewalls, and a base. A layer comprising SixCyFz is deposited over the feature, where “x” is from 0 to 0.2, “y” is from 0.3 to 0.9, and “z” is from 0.1 to 0.6. The SixCyFz-comprising layer and upper portions of the feature opposing sidewalls are etched effective to laterally recess such upper portions proximate the feature top relative to lower portions of the feature opposing sidewalls proximate the feature base. After such etching of the SixCyFz-comprising layer and such etching of upper portions of the feature sidewalls, the substrate is etched using the masking feature as a mask.
    Type: Application
    Filed: August 18, 2005
    Publication date: February 22, 2007
    Inventors: Mirzafer Abatchev, Krupakar Subramanian
  • Publication number: 20070020936
    Abstract: The invention includes methods of etching features into substrates. A plurality of hard mask layers is formed over material of a substrate to be etched. A feature pattern is formed in such layers. A feature is etched only partially into the substrate material using the hard mask layers with the feature pattern therein as a mask. After the partial etching, at least one of the hard mask layers is etched selectively relative to the substrate material and remaining of the hard mask layers. After etching at least one of the hard mask layers, the feature is further etched into the substrate material using at least an innermost of the hard mask layers as a mask. After the further etching, the innermost hard mask layer and any hard mask layers remaining thereover are removed from the substrate, and at least a portion of the feature is incorporated into an integrated circuit.
    Type: Application
    Filed: July 19, 2005
    Publication date: January 25, 2007
    Inventors: Mirzafer Abatchev, Gurtej Sandhu, Aaron Wilson, Tony Schrock
  • Publication number: 20060270230
    Abstract: Methods of etching substrates with small critical dimensions and altering the critical dimensions are disclosed. In one embodiment, a sulfur oxide based plasma is used to etch an amorphous carbon hard mask layer. The features of a pattern can be shrunk using a plasma etch to reduce the resist elements on the surface of the masking structure. Features in the pattern can also be enlarged by depositing polymer on the resist elements or by sloping an underlying layer. In one preferred embodiment, features of the pattern are shrunk before being enlarged in order to reduce line edge roughness.
    Type: Application
    Filed: August 3, 2006
    Publication date: November 30, 2006
    Inventors: Mirzafer Abatchev, David Hwang, Robert Veltrop
  • Publication number: 20060267075
    Abstract: Floating-gate memory cells having a split floating gate facilitate decreased sensitivity to localized defects in the tunnel dielectric layer and/or the intergate dielectric layer. Such memory cells also permit storage of more than one bit per cell. Methods of the various embodiments facilitate fabrication of floating gate segments having dimensions less than the capabilities of the lithographic processed used to form the gate stacks.
    Type: Application
    Filed: May 26, 2005
    Publication date: November 30, 2006
    Inventors: Gurtej Sandhu, Mirzafer Abatchev
  • Publication number: 20060262511
    Abstract: Different sized features in the array and in the periphery of an integrated circuit are patterned on a substrate in a single step. In particular, a mixed pattern, combining two separately formed patterns, is formed on a single mask layer and then transferred to the underlying substrate. The first of the separately formed patterns is formed by pitch multiplication and the second of the separately formed patterns is formed by conventional photolithography. The first of the separately formed patterns includes lines that are below the resolution of the photolithographic process used to form the second of the separately formed patterns. These lines are made by forming a pattern on photoresist and then etching that pattern into an amorphous carbon layer. Sidewall pacers having widths less than the widths of the un-etched parts of the amorphous carbon are formed on the sidewalls of the amorphous carbon. The amorphous carbon is then removed, leaving behind the sidewall spacers as a mask pattern.
    Type: Application
    Filed: July 24, 2006
    Publication date: November 23, 2006
    Inventors: Mirzafer Abatchev, Gurtej Sandhu, Luan Tran, William Rericha, D. Durcan
  • Publication number: 20060263699
    Abstract: Methods of forming arrays of small, densely spaced holes or pillars for use in integrated circuits are disclosed. Various pattern transfer and etching steps can be used, in combination with pitch-reduction techniques, to create densely-packed features. Conventional photolithography steps can be used in combination with pitch-reduction techniques to form sumperimposed, pitch-reduced patterns of crossing elongate features that can be consolidated into a single layer.
    Type: Application
    Filed: May 23, 2005
    Publication date: November 23, 2006
    Inventors: Mirzafer Abatchev, Gurtej Sandhu
  • Publication number: 20060258162
    Abstract: Different sized features in the array and in the periphery of an integrated circuit are patterned on a substrate in a single step. In particular, a mixed pattern, combining two separately formed patterns, is formed on a single mask layer and then transferred to the underlying substrate. The first of the separately formed patterns is formed by pitch multiplication and the second of the separately formed patterns is formed by conventional photolithography. The first of the separately formed patterns includes lines that are below the resolution of the photolithographic process used to form the second of the separately formed patterns. These lines are made by forming a pattern on photoresist and then etching that pattern into an amorphous carbon layer. Sidewall pacers having widths less than the widths of the un-etched parts of the amorphous carbon are formed on the sidewalls of the amorphous carbon. The amorphous carbon is then removed, leaving behind the sidewall spacers as a mask pattern.
    Type: Application
    Filed: July 24, 2006
    Publication date: November 16, 2006
    Inventors: Mirzafer Abatchev, Gurtej Sandhu, Luan Tran, William Rericha, D. Durcan
  • Publication number: 20060211260
    Abstract: Differently-sized features of an integrated circuit are formed by etching a substrate using a mask which is formed by combining two separately formed patterns. Pitch multiplication is used to form the relatively small features of the first pattern and conventional photolithography used to form the relatively large features of the second pattern. Pitch multiplication is accomplished by patterning a photoresist and then etching that pattern into an amorphous carbon layer. Sidewall spacers are then formed on the sidewalls of the amorphous carbon. The amorphous carbon is removed, leaving behind the sidewall spacers, which define the first mask pattern. A bottom anti-reflective coating (BARC) is then deposited around the spacers to form a planar surface and a photoresist layer is formed over the BARC. The photoresist is next patterned by conventional photolithography to form the second pattern, which is then is transferred to the BARC.
    Type: Application
    Filed: August 29, 2005
    Publication date: September 21, 2006
    Inventors: Luan Tran, William Rericha, John Lee, Ramakanth Alapati, Sheron Honarkhah, Shuang Meng, Puneet Sharma, Jingyi (Jenny) Bai, Zhiping Yin, Paul Morgan, Mirzafer Abatchev, Gurtej Sandhu, D. Durcan
  • Publication number: 20060105577
    Abstract: A modulated bias power etching method for etching a substrate is disclosed. The method alternatively deposits and etches material from a low aspect area of an integrated circuit device to form a static area while etching material from a high aspect area. The modulation pulse period and repetition rate are adjusted to permit deposition at low aspect ratio and very little or no deposition at high aspect ratio during the deposition cycle and to permit etching of the material deposited on the low aspect ratio area and etching of the material in the high aspect ratio area during the etching cycle.
    Type: Application
    Filed: December 29, 2005
    Publication date: May 18, 2006
    Inventors: Kevin Donohoe, Mirzafer Abatchev, Robert Veltrop
  • Publication number: 20060046483
    Abstract: Methods of etching substrates with small critical dimensions and altering the critical dimensions are disclosed. In one embodiment, a sulfur oxide based plasma is used to etch an amorphous carbon hard mask layer. The features of a pattern can be shrunk using a plasma etch to reduce the resist elements on the surface of the masking structure. Features in the pattern can also be enlarged by depositing polymer on the resist elements or by sloping an underlying layer. In one preferred embodiment, features of the pattern are shrunk before being enlarged in order to reduce line edge roughness.
    Type: Application
    Filed: August 31, 2004
    Publication date: March 2, 2006
    Inventors: Mirzafer Abatchev, David Hwang, Robert Veltrop
  • Publication number: 20060046484
    Abstract: Different sized features in the array and in the periphery of an integrated circuit are patterned on a substrate in a single step. In particular, a mixed pattern, combining two separately formed patterns, is formed on a single mask layer and then transferred to the underlying substrate. The first of the separately formed patterns is formed by pitch multiplication and the second of the separately formed patterns is formed by conventional photolithography. The first of the separately formed patterns includes lines that are below the resolution of the photolithographic process used to form the second of the separately formed patterns. These lines are made by forming a pattern on photoresist and then etching that pattern into an amorphous carbon layer. Sidewall pacers having widths less than the widths of the un-etched parts of the amorphous carbon are formed on the sidewalls of the amorphous carbon. The amorphous carbon is then removed, leaving behind the sidewall spacers as a mask pattern.
    Type: Application
    Filed: September 2, 2004
    Publication date: March 2, 2006
    Inventors: Mirzafer Abatchev, Gurtej Sandhu, Luan Tran, William Rericha, D. Durcan
  • Publication number: 20060046200
    Abstract: The dimensions of mask patterns, such as pitch-multiplied spacers, are controlled by controlled growth of features in the patterns after they are formed. To form a pattern of pitch-multiplied spacers, a pattern of mandrels is first formed overlying a semiconductor substrate. Spacers are then formed on sidewalls of the mandrels by depositing a blanket layer of material over the mandrels and preferentially removing spacer material from horizontal surfaces. The mandrels are then selectively removed, leaving behind a pattern of freestanding spacers. The spacers comprise a material, such as polysilicon and amorphous silicon, known to increase in size upon being oxidized. The spacers are oxidized to grow them to a desired width. After reaching the desired width, the spacers can be used as a mask to pattern underlying layers and the substrate.
    Type: Application
    Filed: September 1, 2004
    Publication date: March 2, 2006
    Inventors: Mirzafer Abatchev, Gurtej Sandhu
  • Publication number: 20040161941
    Abstract: A modulated bias power etching method for etching a substrate is disclosed. The method alternatively deposits and etches material from a low aspect area of an integrated circuit device to form a static area while etching material from a high aspect area. The modulation pulse period and repetition rate are adjusted to permit deposition at low aspect ratio and very little or no deposition at high aspect ratio during the deposition cycle and to permit etching of the material deposited on the low aspect ratio area and etching of the material in the high aspect ratio area during the etching cycle.
    Type: Application
    Filed: February 18, 2004
    Publication date: August 19, 2004
    Inventors: Kevin G. Donohoe, Mirzafer Abatchev, Robert Veltrop
  • Patent number: 6716758
    Abstract: A modulated bias power etching method for etching a substrate is disclosed. The method alternatively deposits and etches material from a low aspect area of an integrated circuit device to form a static area while etching material from a high aspect area. The modulation pulse period and repetition rate are adjusted to permit deposition at low aspect ratio and very little or no deposition at high aspect ratio during the deposition cycle and to permit etching of the material deposited on the low aspect ratio area and etching of the material in the high aspect ratio area during the etching cycle.
    Type: Grant
    Filed: August 25, 1999
    Date of Patent: April 6, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Kevin G. Donohoe, Mirzafer Abatchev, Robert Veltrop