Patents by Inventor Mohammed El Hacin Sennoun

Mohammed El Hacin Sennoun has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10830174
    Abstract: A monolithic heat exchanger body includes a plurality of heating walls and a plurality of combustion fins. The plurality of heating walls are configured and arranged in an array of spirals or spiral arcs relative to a longitudinal axis. Adjacent portions of the plurality of heating walls respectively define a corresponding plurality of heating fluid pathways therebetween. The plurality of combustion fins are circumferentially spaced about a perimeter of an inlet plenum. The inlet plenum includes or fluidly communicates with a combustion chamber. The plurality of heating fluid pathways fluidly communicate with the inlet plenum. The plurality of combustion fins occupy a radially or concentrically inward portion of the monolithic heat exchanger body. The plurality of heating fluid pathways have a heat transfer relationship with a heat sink disposed about a radially or concentrically outward portion of the monolithic heat exchanger body.
    Type: Grant
    Filed: May 20, 2020
    Date of Patent: November 10, 2020
    Assignee: General Electric Company
    Inventors: Joshua Tyler Mook, Kevin Michael VandeVoorde, Aigbedion Akwara, Michael Robert Notarnicola, Jason Joseph Bellardi, Mohammed El Hacin Sennoun, Mohamed Osama, Zachary William Nagel, Victor Luis Marrero Ortiz
  • Patent number: 10823067
    Abstract: The heat exchanger assembly includes a first conduit, an external surface, and a set of fins. The first conduit includes a first inlet, a first outlet, and a first internal flow path extending between the first inlet and first outlet. The first conduit is configured to channel a flow of fluid to be cooled from the first inlet to the first outlet. The external surface which includes a plurality of regions. Each region of the plurality of regions includes a respective set of fins extending from the external surface. Each set of fins of a respective region of the plurality of regions are oriented in a different direction than sets of fins of other regions of the plurality of regions.
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: November 3, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Mohammed El Hacin Sennoun, William Joseph Solomon, Kyle Louis Miller
  • Publication number: 20200309033
    Abstract: A heat exchanger assembly includes a first internal flow path configured to channel a flow of fluid to be cooled from a first inlet to a first outlet. The heat exchanger assembly also includes a second internal flow path configured to channel a flow of a first coolant from a first inlet to a first outlet. The heat exchanger assembly further includes an external flow path configured to receive a flow of a second coolant proximate a surface of the external flow path.
    Type: Application
    Filed: June 12, 2020
    Publication date: October 1, 2020
    Inventor: Mohammed El Hacin Sennoun
  • Publication number: 20200298652
    Abstract: A thermal management system includes a housing, and a monolithic core structure disposed within the housing. An outer surface of the core structure defines at least part of a first passageway. An inner surface of the core structure defines at least part of a second passageway. The core structure includes a separator wall that isolates a first flow passing through the first passageway from a second flow passing through the second passageway. The first passageway is in thermal communication with the second passageway. The core structure includes one or more heat exchanger features, or fins, that are positioned within the first passageway, the second passageway, or both the first and second passageways. The core structure may have a compliant segment coupled to two or more walls.
    Type: Application
    Filed: June 11, 2020
    Publication date: September 24, 2020
    Inventors: Kevin Bailey, James Fitzgerald Bonar, John Dowell, Rachel Wyn Levine, Nicolas Kristopher Sabo, Mohammed El Hacin Sennoun, Jared Wolfe
  • Patent number: 10774741
    Abstract: An aeronautical propulsion system including a turbine engine having a fan and an electric motor drivingly coupled to at least one of the fan or the turbine engine. The aeronautical propulsion system additionally includes a fuel cell for providing electrical energy to the electric motor, the fuel cell generating water as a byproduct. The aeronautical portion system directs the water generated by the fuel cell to the turbine engine during operation to improve an efficiency of the aeronautical propulsion system.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: September 15, 2020
    Assignee: General Electric Company
    Inventor: Mohammed El Hacin Sennoun
  • Patent number: 10724470
    Abstract: An aspect of the present disclosure is directed to a system for energy conversion. The system includes a closed cycle engine containing a volume of working fluid. The engine includes an expansion chamber and a compression chamber each separated by a piston attached to a connection member of a piston assembly. The engine further includes a plurality of heater conduits extended from the expansion chamber. The engine includes a plurality of chiller conduits extended from the compression chamber. The expansion chamber and heater conduits are fluidly connected to the compression chamber and chiller conduits via a walled conduit.
    Type: Grant
    Filed: May 21, 2019
    Date of Patent: July 28, 2020
    Assignee: General Electric Company
    Inventors: Joshua Tyler Mook, Michael Thomas Gansler, Scott Douglas Waun, Kevin Michael VandeVoorde, Aigbedion Akwara, Michael Robert Notarnicola, Jason Joseph Bellardi, Mohammed El Hacin Sennoun, Mohamed Osama
  • Patent number: 10711733
    Abstract: Systems and methods for converting energy are provided. In one aspect, the system includes a closed cycle engine defining a cold side. The system also includes a bottoming-cycle loop. A pump is operable to move a working fluid along the bottoming-cycle loop. A cold side heat exchanger is positioned along the bottoming-cycle loop in a heat exchange relationship with the cold side of the closed cycle engine. A constant density heat exchanger is positioned along the bottoming-cycle loop downstream of the cold side heat exchanger and upstream of an expansion device. The constant density heat exchanger is operable to hold a volume of the working fluid flowing therethrough at constant density while increasing, via a heat source, the temperature and pressure of the working fluid. The expansion device receives the working fluid at elevated temperature and pressure and extracts thermal energy from the working fluid to produce work.
    Type: Grant
    Filed: May 21, 2019
    Date of Patent: July 14, 2020
    Assignee: General Electric Company
    Inventors: Michael Robert Notarnicola, Joshua Tyler Mook, Kevin Michael VandeVoorde, Aigbedion Akwara, Mohammed El Hacin Sennoun, Mary Kathryn Thompson
  • Patent number: 10697371
    Abstract: The heat exchanger assembly includes a first internal flow path configured to channel a flow of fluid to be cooled from a first inlet to a first outlet. The heat exchanger assembly also includes a second internal flow path configured to channel a flow of a first coolant from a first inlet to a first outlet. The heat exchanger assembly further includes an external flow path configured to receive a flow of a second coolant proximate a surface of the external flow path.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: June 30, 2020
    Assignee: General Electric Company
    Inventor: Mohammed El Hacin Sennoun
  • Patent number: 10648365
    Abstract: A gas turbine engine having a core engine. The core engine includes an inlet, a compressor section, a combustion section, a turbine section, and an exhaust. The gas turbine engine also includes a bearing sump arranged in the core engine for containing lubrication, the bearing sump and lubrication having an operational range between at least about 0° F. and about 550° F.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: May 12, 2020
    Assignee: General Electric Company
    Inventors: Kyle Robert Snow, Brandon Wayne Miller, Duane Howard Anstead, Jonothan Allen Scheetz, Mohammed El Hacin Sennoun, Ning Fang
  • Publication number: 20200072559
    Abstract: A heat exchanger and a method for additively manufacturing the heat exchanger are provided. The heat exchanger includes a plurality of fluid passageways that are formed by additive manufacturing methods which enable the formation of fluid passageways that are smaller in size, that have thinner walls, and that have complex and intricate heat exchanger features that were not possible using prior manufacturing methods. For example, the fluid passageways may be curvilinear and may include heat exchanging fins that are less than 0.01 inches thick and formed at a fin density of more than four heat exchanging fins per centimeter. In addition, the heat exchanging fins may be angled with respect to the walls of the fluid passageways and adjacent fins may be offset relative to each other.
    Type: Application
    Filed: November 7, 2019
    Publication date: March 5, 2020
    Inventors: Mohammed El Hacin Sennoun, James Fitzgerald Bonar, Rachel Wyn Levine
  • Patent number: 10502502
    Abstract: A heat exchanger and a method for additively manufacturing the heat exchanger are provided. The heat exchanger includes a plurality of fluid passageways that are formed by additive manufacturing methods which enable the formation of fluid passageways that are smaller in size, that have thinner walls, and that have complex and intricate heat exchanger features that were not possible using prior manufacturing methods. For example, the fluid passageways may be curvilinear and may include heat exchanging fins that are less than 0.01 inches thick and formed at a fin density of more than four heat exchanging fins per centimeter. In addition, the heat exchanging fins may be angled with respect to the walls of the fluid passageways and adjacent fins may be offset relative to each other.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: December 10, 2019
    Assignee: General Electric Company
    Inventors: Mohammed El Hacin Sennoun, James Fitzgerald Bonar, Rachel Wyn Levine
  • Patent number: 10494949
    Abstract: A heat exchanger assembly for a gas turbine engine that includes an outer engine case. The heat exchanger assembly includes at least one cooling channel, the at least one cooling channel is configured to receive a flow of fluid to be cooled. At least one first coolant flow duct that is configured to receive a flow of a first coolant, wherein the at least one cooling channel is disposed between a first inlet and a first outlet. The heat exchanger assembly further include at least one second coolant flow duct that is configured to receive a flow of a second coolant, wherein the at least one cooling channel is disposed between a second inlet and a second outlet.
    Type: Grant
    Filed: August 5, 2016
    Date of Patent: December 3, 2019
    Assignee: General Electric Company
    Inventors: Jeffrey Douglas Rambo, Andrew Martin, Curtis Walton Stover, Jared Matthew Wolfe, Mohammed El Hacin Sennoun
  • Patent number: 10450886
    Abstract: An aeronautical propulsion system includes a fan having a plurality of fan blades and an electric motor drivingly connected to the fan for rotating the plurality of fan blades. A chemically rechargeable ultra-capacitor is included for providing the electric motor with a substantially continuous flow of electric energy during operation of the chemically rechargeable ultra-capacitor, resulting in a more efficient aeronautical propulsion system.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: October 22, 2019
    Assignee: General Electric Company
    Inventor: Mohammed El Hacin Sennoun
  • Patent number: 10400675
    Abstract: An apparatus and method of cooling a gas turbine engine including a core with a compressor section in which the compressor section includes a closed loop cooling circuit having a pump, at least one heat pipe extending from at least one of the stationary vanes, a heat exchanger located within the bypass air flow, and a coolant conduit passing fluidly coupled to the pump and heat exchanger and passing by the heat pipe. The pump pumps coolant through the coolant conduit to draw heat from the heat pipes into the coolant to form heated coolant, the heated coolant then passes through the heat exchanger, where the heat is rejected from the coolant to the bypass air to cool the coolant to form cooled coolant, which is then returned to the heat pipes.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: September 3, 2019
    Assignee: General Electric Company
    Inventors: Mohammed El Hacin Sennoun, Ronald Scott Bunker
  • Publication number: 20190250589
    Abstract: The present disclosure generally relates to additive manufacturing or printing of an object using parallel processing of files comprising 3D models of the object and/or portions thereof. A master file comprising a 3D model of the object is divided into subordinate files, wherein each subordinate file comprises a 3D model of a corresponding portion of the object. Each subordinate file is processed in parallel, controlling at least a first laser source to fabricate each portion from a build material. Parallel processing according to the methods of the present disclosure expedites additive manufacturing or printing over conventional methods that build an object in layers completed in series.
    Type: Application
    Filed: April 25, 2019
    Publication date: August 15, 2019
    Inventor: Mohammed El Hacin Sennoun
  • Publication number: 20190203613
    Abstract: A fluid cooling system for use in a gas turbine engine including a fan casing circumscribing a core gas turbine engine includes a heat source configured to transfer heat to a heat transfer fluid and a primary heat exchanger coupled in flow communication with the heat source. The primary heat exchanger is configured to channel the heat transfer fluid therethrough and is coupled to the fan casing. The fluid cooling system also includes a secondary heat exchanger coupled in flow communication with the primary heat exchanger. The secondary heat exchanger is configured to channel the heat transfer fluid therethrough and is coupled to the core gas turbine engine. The fluid cooling system also includes a bypass mechanism coupled in flow communication with the secondary heat exchanger. The bypass mechanism is selectively moveable based on a temperature of a fluid medium to control a cooling airflow through the secondary heat exchanger.
    Type: Application
    Filed: March 5, 2019
    Publication date: July 4, 2019
    Inventor: Mohammed El Hacin Sennoun
  • Patent number: 10323540
    Abstract: A fluid cooling system for use in a gas turbine engine including a fan casing circumscribing a core gas turbine engine includes a heat source configured to transfer heat to a heat transfer fluid and a primary heat exchanger coupled in flow communication with the heat source. The primary heat exchanger is configured to channel the heat transfer fluid therethrough and is coupled to the fan casing. The fluid cooling system also includes a secondary heat exchanger coupled in flow communication with the primary heat exchanger. The secondary heat exchanger is configured to channel the heat transfer fluid therethrough and is coupled to the core gas turbine engine. The fluid cooling system also includes a bypass mechanism coupled in flow communication with the secondary heat exchanger. The bypass mechanism is selectively moveable based on a temperature of a fluid medium to control a cooling airflow through the secondary heat exchanger.
    Type: Grant
    Filed: December 7, 2015
    Date of Patent: June 18, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventor: Mohammed El Hacin Sennoun
  • Patent number: 10317881
    Abstract: The present disclosure generally relates to additive manufacturing or printing of an object using parallel processing of files comprising 3D models of the object and/or portions thereof. A master file comprising a 3D model of the object is divided into subordinate files, wherein each subordinate file comprises a 3D model of a corresponding portion of the object. Each subordinate file is processed in parallel, controlling at least a first laser source to fabricate each portion from a build material. Parallel processing according to the methods of the present disclosure expedites additive manufacturing or printing over conventional methods that build an object in layers completed in series.
    Type: Grant
    Filed: March 1, 2017
    Date of Patent: June 11, 2019
    Assignee: General Electric Company
    Inventor: Mohammed El Hacin Sennoun
  • Publication number: 20190153954
    Abstract: A system for managing thermal transfer in at least one of an aircraft or a gas turbine engine includes a first engine system utilizing an oil for heat transfer. The oil of the first system has a temperature limit of at least about 500° F. The system additionally includes a fuel system having a deoxygenation unit for deoxygenating fuel in the fuel system, as well as a fuel-oil heat exchanger located downstream of the deoxygenation unit. The fuel-oil heat exchanger is in thermal communication with the oil in the first engine system and the fuel in the fuel system for transferring heat from the oil in the first engine system to the fuel in the fuel system.
    Type: Application
    Filed: January 24, 2019
    Publication date: May 23, 2019
    Inventors: Brandon Wayne Miller, Duane Howard Anstead, Mohammed El Hacin Sennoun, Ning Fang, Kyle Robert Snow
  • Publication number: 20190101338
    Abstract: A heat exchanger and a method for additively manufacturing the heat exchanger are provided. The heat exchanger includes a plurality of fluid passageways that are formed by additive manufacturing methods which enable the formation of fluid passageways that are smaller in size, that have thinner walls, and that have complex and intricate heat exchanger features that were not possible using prior manufacturing methods. For example, the fluid passageways may be curvilinear and may include heat exchanging fins that are less than 0.01 inches thick and formed at a fin density of more than four heat exchanging fins per centimeter. In addition, the heat exchanging fins may be angled with respect to the walls of the fluid passageways and adjacent fins may be offset relative to each other.
    Type: Application
    Filed: November 30, 2018
    Publication date: April 4, 2019
    Inventors: Mohammed El Hacin Sennoun, James Fitzgerald Bonar, Rachel Wyn Levine