Patents by Inventor Moon Gyu Jang

Moon Gyu Jang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090250756
    Abstract: An n-type SBTT and a manufacturing method thereof are provided. The SBTT includes a silicon layer, a gate, a double layer that has a rare-earth metal silicide layer and a transition metal silicide layer. The silicon layer has a channel region. The gate is formed in an overlapping manner on the channel region and has a gate dielectric layer on its interface with respect to the silicon layer. The double layer is formed as a source/drain that has the channel region interposed on the silicon layer.
    Type: Application
    Filed: June 16, 2009
    Publication date: October 8, 2009
    Inventors: Yark Yeon Kim, Moon Gyu Jang, Jae Heon Shin, Seong Jae Lee
  • Publication number: 20090215232
    Abstract: Provided are a Schottky barrier tunnel transistor and a method of manufacturing the same that are capable of minimizing leakage current caused by damage to a gate sidewall of the Schottky barrier tunnel transistor using a Schottky tunnel barrier naturally formed at a semiconductor-metal junction as a tunnel barrier. The method includes the steps of: forming a semiconductor channel layer on an insulating substrate; forming a dummy gate on the semiconductor channel layer; forming a source and a drain at both sides of the dummy gate on the insulating substrate; removing the dummy gate; forming an insulating layer on a sidewall from which the dummy gate is removed; and forming an actual gate in a space from which the dummy gate is removed. In manufacturing the Schottky barrier tunnel transistor using the dummy gate, it is possible to form a high-k dielectric gate insulating layer and a metal gate, and stable characteristics in silicidation of the metal layer having very strong reactivity can be obtained.
    Type: Application
    Filed: May 4, 2009
    Publication date: August 27, 2009
    Inventors: Yark Yeon KIM, Seong Jae LEE, Moon Gyu JANG, Chel Jong CHOI, Myung Sim JUN, Byoung Chul PARK
  • Patent number: 7566642
    Abstract: An n-type SBTT and a manufacturing method thereof are provided. The SBTT includes a silicon layer, a gate, a double layer that has a rare-earth metal silicide layer and a transition metal silicide layer. The silicon layer has a channel region. The gate is formed in an overlapping manner on the channel region and has a gate dielectric layer on its interface with respect to the silicon layer. The double layer is formed as a source/drain that has the channel region interposed on the silicon layer.
    Type: Grant
    Filed: July 22, 2005
    Date of Patent: July 28, 2009
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Yark Yeon Kim, Moon Gyu Jang, Jae Heon Shin, Seong Jae Lee
  • Publication number: 20090152596
    Abstract: Provided are a semiconductor Field-Effect Transistor (FET) sensor and a method of fabricating the same. The method includes providing a semiconductor substrate, forming a sensor structure having a fin-shaped structure on the semiconductor substrate, injecting ions for electrical ohmic contact into the sensor structure, and depositing a metal electrode on the sensor structure, immobilizing a sensing material to be specifically combined with a target material onto both sidewall surfaces of the fin-shaped structure, and forming a passage on the sensor structure such that the target material passes through the fin-shaped structure.
    Type: Application
    Filed: August 20, 2008
    Publication date: June 18, 2009
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Jong Heon YANG, In Bok Baek, Chang Geun Ahn, Chan Woo Park, An Soon Kim, Han Young Yu, Chil Seong Ah, Tae Youb Kim, Myung Sim Jun, Moon Gyu Jang
  • Publication number: 20090152598
    Abstract: Provided are a biosensor using a silicon nanowire and a method of manufacturing the same. The silicon nanowire can be formed to have a shape, in which identical patterns are continuously repeated, to enlarge an area in which probe molecules are fixed to the silicon nanowire, thereby increasing detection sensitivity. In addition, the detection sensitivity can be easily adjusted by adjusting a gap between the identical patterns of the silicon nanowire depending on characteristics of target molecules, without adjusting a line width of the silicon nanowire in the conventional art. Further, the gap between the identical patterns of the silicon nanowire can be adjusted depending on characteristics of the target molecule to differentiate detection sensitivities, thereby simultaneously detecting various detection sensitivities.
    Type: Application
    Filed: September 29, 2008
    Publication date: June 18, 2009
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: In Bok BAEK, Jong Heon Yang, Chang Geun Ahn, Han Young Yu, Chil Seong Ah, Chan Woo Park, An Soon Kim, Tae Youb Kim, Moon Gyu Jang, Myung Sim Jun
  • Publication number: 20090152597
    Abstract: Provided are a biosensor with a silicon nanowire and a method of manufacturing the same, and more particularly, a biosensor with a silicon nanowire including a defect region formed by irradiation of an electron beam, and a method of manufacturing the same. The biosensor includes: a silicon substrate; a source region disposed on the silicon substrate; a drain region disposed on the silicon substrate; and a silicon nanowire disposed on the source region and the drain region, and having a defect region formed by irradiation of an electron beam. Therefore, by irradiating a certain region of a high-concentration doped silicon nanowire with an electron beam to lower electron mobility in the certain region, it is possible to maintain a low contact resistance between the silicon nanowire and a metal electrode and to lower operation current of a biomaterial detection part, thereby improving sensitivity of the biosensor.
    Type: Application
    Filed: August 20, 2008
    Publication date: June 18, 2009
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Tae Youb KIM, Nae Man Park, Han Young Yu, Moon Gyu Jang, Jong Heon Yang
  • Patent number: 7545000
    Abstract: Provided are a Schottky barrier tunnel transistor and a method of manufacturing the same that are capable of minimizing leakage current caused by damage to a gate sidewall of the Schottky barrier tunnel transistor using a Schottky tunnel barrier naturally formed at a semiconductor-metal junction as a tunnel barrier. The method includes the steps of: forming a semiconductor channel layer on an insulating substrate; forming a dummy gate on the semiconductor channel layer; forming a source and a drain at both sides of the dummy gate on the insulating substrate; removing the dummy gate; forming an insulating layer on a sidewall from which the dummy gate is removed; and forming an actual gate in a space from which the dummy gate is removed. In manufacturing the Schottky barrier tunnel transistor using the dummy gate, it is possible to form a high-k dielectric gate insulating layer and a metal gate, and stable characteristics in silicidation of the metal layer having very strong reactivity can be obtained.
    Type: Grant
    Filed: July 13, 2006
    Date of Patent: June 9, 2009
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Yark Yeon Kim, Seong Jae Lee, Moon Gyu Jang, Chel Jong Choi, Myung Sim Jun, Byoung Chul Park
  • Publication number: 20080299736
    Abstract: Provided is a method of manufacturing a semiconductor device including a high-k dielectric thin layer formed using an interfacial reaction. The method includes the steps of: forming an oxide layer on a silicon substrate; depositing a metal layer on the oxide layer to form a metal silicate layer using an interfacial reaction between the oxide layer and the metal layer; forming a metal gate by etching the metal silicate layer and the metal layer; and forming a lightly doped drain (LDD) region and source and drain regions in the silicon substrate after forming the metal gate. In this method, a semiconductor device having high quality and performance can be manufactured by a simpler process at lower cost.
    Type: Application
    Filed: March 11, 2008
    Publication date: December 4, 2008
    Applicant: Electronics and Telecommunications research Institute
    Inventors: Chel Jong Choi, Moon Gyu Jang, Yark Yeon Kim, Myung Sim Jun, Tae Youb Kim
  • Publication number: 20080128786
    Abstract: Provided are a high density semiconductor memory device capable of precisely reading data by suppressing the occurrence of a leakage current due to the high-integration of the semiconductor memory device, and a method for manufacturing the semiconductor memory device. The high density semiconductor memory device includes: source and drain electrodes disposed over a substrate, and forming a Schottky junction with a channel region; and a floating gate disposed over the substrate of the channel region, and configured with a plurality of nanodots. The nanodots may be formed of a silicon compound or any material that can be charged.
    Type: Application
    Filed: December 4, 2007
    Publication date: June 5, 2008
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Taeyoub KIM, Myungsim JUN, Yark-Yeon KIM, Moon-Gyu JANG, Chel-Jong CHOI, Seong-Jae LEE, Byoungchul PARK
  • Publication number: 20080132049
    Abstract: Provided is a method for fabricating a Schottky barrier tunnel transistor (SBTT) that can fundamentally prevent the generation of a gate leakage current caused by damage of spacers formed on both sidewalls of a gate electrode. The method for fabricating a Schottky barrier tunnel transistor, which includes: a) forming a silicon pattern and a sacrificial pattern on a buried oxide layer supported by a support substrate; b) forming a source/drain region on the buried oxide layer exposed on both sides of the silicon pattern, the source/drain region being formed of a metal layer and being in contact with both sidewalls of the silicon pattern; c) removing the sacrificial pattern to expose the top surface of the silicon pattern; and d) forming a gate insulating layer and a gate electrode on the exposed silicon pattern.
    Type: Application
    Filed: October 31, 2007
    Publication date: June 5, 2008
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Yark-Yeon KIM, Seong-Jae Lee, Moon-Gyu Jang, Tae-Youb Kim, Chel-Jong Choi, Myung-Sim Jun, Byoung-Chul Park
  • Publication number: 20080128760
    Abstract: Provided is a Schottky barrier nanowire field effect transistor, which has source/drain electrodes formed of metal silicide and a channel formed of a nanowire, and a method for fabricating the same. The Schottky barrier nanowire field effect transistor includes: a channel suspended over a substrate and including a nanowire; metal silicide source/drain electrodes electrically connected to both ends of the channel over the substrate; a gate electrode disposed to surround the channel; and a gate insulation layer disposed between the channel and the gate electrode.
    Type: Application
    Filed: November 30, 2007
    Publication date: June 5, 2008
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Myungsim Jun, Moon-Gyu Jang, Yark-Yeon Kim, Chel-Jong Choi, Taeyoub Kim, Seongjae Lee
  • Publication number: 20080124854
    Abstract: A method for fabricating a semiconductor device includes forming a gate insulation layer over a substrate, forming a conductive compound containing layer over the gate insulation layer, etching the conductive compound containing layer and the gate insulation layer to form a gate structure, forming a metal layer over the resultant structure obtained after the etching, and letting the metal layer to react with silicon from the substrate to form source and drain regions comprising a metal silicide layer over the substrate exposed on both sides of the gate structure, wherein the conductive compound containing layer does not react with the metal layer.
    Type: Application
    Filed: May 7, 2007
    Publication date: May 29, 2008
    Inventors: Chel-Jong CHOI, Moon-Gyu JANG, Yark-Yeon KIM, Tae-Youb KIM, Myung-Sim JUN, Seong-Jae LEE
  • Publication number: 20080121868
    Abstract: A Schottky barrier tunnel transistor includes a gate electrode, and source and drain regions. The gate electrode is formed over a channel region of a substrate to form a Schottky junction with the substrate. The source and drain regions are formed in the substrate exposed on both sides of the gate electrode.
    Type: Application
    Filed: May 8, 2007
    Publication date: May 29, 2008
    Inventors: Moon-Gyu Jang, Yark-Yeon Kim, Chel-Jong Choi, Myung-Sim Jun, Tae-Youb Kim, Seong-Jae Lee
  • Patent number: 7312510
    Abstract: A device using an ambipolar transport of an SB-MOSFET and a method for operating the same are provided. The SB-MOSFET includes: a silicon channel region; a source and a drain contacted on both sides of the channel region and formed of material including metal layer; and a gate formed on the channel region, with a gate dielectric layer interposed therebetween. Positive (+), 0 or negative (?) gate voltage is selectively applied to the gate, the channel becomes off-state when the gate voltage between a negative threshold voltage and a positive threshold voltage is applied, and the channel becomes a first on-state and a second on-state when the gate voltage is lower than the negative threshold voltage or higher than the positive threshold voltage. Accordingly, it is possible to implement three current states, that is, hole current, electron current, and no current. The SB-MOSFET can be applied to a multi-bit memory and/or multi-bit logic device.
    Type: Grant
    Filed: July 22, 2005
    Date of Patent: December 25, 2007
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Jae Heon Shin, Moon Gyu Jang, Yark Yeon Kim, Seong Jae Lee
  • Patent number: 7268407
    Abstract: Provided are a Schottky barrier tunnel single electron transistor and a method of manufacturing the same that use a Schottky barrier formed between metal and semiconductor by replacing a source and a drain with silicide as a reactant of silicon and metal, instead of a conventional method of manufacturing a single electron transistor (SET) that includes source and drain regions by implanting dopants such that an artificial quantum dot is formed in a channel region. As a result, it does not require a conventional PADOX process to form a quantum dot for a single electron transistor (SET), height and width of a tunneling barrier can be artificially adjusted by using silicide materials that have various Schottky junction barriers, and it is possible to improve current driving capability of the single electron transistor (SET).
    Type: Grant
    Filed: August 3, 2005
    Date of Patent: September 11, 2007
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Moon Gyu Jang, Yark Yeon Kim, Jae Heon Shin, Seong Jae Lee
  • Publication number: 20060048706
    Abstract: In a process for manufacturing a hyperfine semiconductor device, an apparatus for manufacturing a semiconductor device such as a schottky barrier MOSFET and a method for manufacturing the semiconductor device using the same are provided. Two chambers are connected with each other. A cleaning process, a metal layer forming process, and subsequent processes can be performed in situ by using the two chambers, thereby the attachment of the unnecessary impurities and the formation of the oxide can be prevented and the optimization of the process can be accomplished.
    Type: Application
    Filed: December 30, 2002
    Publication date: March 9, 2006
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH I INSTITUTE
    Inventors: Woo-Seok Cheong, Seong-Jae Lee, Won-Ju Jo, Moon-Gyu Jang
  • Patent number: 7005356
    Abstract: A schottky barrier transistor and a method of manufacturing the same are provided. The method includes forming a gate insulating layer and a gate on a substrate, forming a spacer on a sidewall of the gate, and growing a polycrystalline silicon layer and a monocrystalline silicon layer on the gate and the substrate, respectively, using a selective silicon growth. A metal is deposited on the polycrystalline silicon layer and the monocrystalline silicon layer. Then, the metal reacts with silicon of the polycrystalline silicon layer and the monocyrstalline silicon layer to form a self-aligned metal silicide layer. Therefore, selective wet etching for removing an unreacted metal after silicidation can be omitted. Furthermore, etching damage caused during the formation of the spacer can be decreased during the growth of the monocrystalline silicon layer, thereby improving the electrical characteristics of devices.
    Type: Grant
    Filed: December 23, 2003
    Date of Patent: February 28, 2006
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Woo Seok Cheong, Seong Jae Lee, Moon Gyu Jang
  • Publication number: 20040206980
    Abstract: A schottky barrier transistor and a method of manufacturing the same are provided. The method includes forming a gate insulating layer and a gate on a substrate, forming a spacer on a sidewall of the gate, and growing a polycrystalline silicon layer and a monocrystalline silicon layer on the gate and the substrate, respectively, using a selective silicon growth. A metal is deposited on the polycrystalline silicon layer and the monocrystalline silicon layer. Then, the metal reacts with silicon of the polycrystalline silicon layer and the monocyrstalline silicon layer to form a self-aligned metal silicide layer. Therefore, selective wet etching for removing an unreacted metal after silicidation can be omitted. Furthermore, etching damage caused during the formation of the spacer can be decreased during the growth of the monocrystalline silicon layer, thereby improving the electrical characteristics of devices.
    Type: Application
    Filed: December 23, 2003
    Publication date: October 21, 2004
    Inventors: Woo Seok Cheong, Seong Jae Lee, Moon Gyu Jang
  • Patent number: 6797629
    Abstract: The present invention relates to a method of manufacturing a nano transistor. The present invention manufactures the nano transistor without changing a conventional method of forming the nano transistor formed on a SOI substrate. Further, the present invention includes forming a N well and a P well at giving regions of an underlying silicon substrate so that a given voltage can be individually applied to a NMOS transistor and a PMOS transistor. Therefore, the present invention can control the threshold voltage to prevent an increase of the leakage current.
    Type: Grant
    Filed: June 27, 2002
    Date of Patent: September 28, 2004
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Moon Gyu Jang, Won Ju Cho, Seong Jae Lee, Kyoung Wan Park
  • Patent number: 6723587
    Abstract: An ultra small-sized SOI MOSFET having a high integration density, low power consumption, but high performances, and a method of fabricating the same are provided.
    Type: Grant
    Filed: December 31, 2002
    Date of Patent: April 20, 2004
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Won-Ju Cho, Jong-Heon Yang, Moon-Gyu Jang, Seong-Jae Lee, Kyoung-Wan Park, Ki-Ju Im, Ji-Hun Oh