Patents by Inventor Morgan Evans

Morgan Evans has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11967489
    Abstract: A plasma source may include a plasma chamber, where the plasma chamber has a first side, defining a first plane and an extraction assembly, disposed adjacent to the side of the plasma chamber, where the extraction assembly includes at least two electrodes. A first electrode may be disposed immediately adjacent the side of the plasma chamber, wherein a second electrode defines a vertical displacement from the first electrode along a first direction, perpendicular to the first plane, wherein the first electrode comprises a first aperture, and the second electrode comprises a second aperture. The first aperture may define a lateral displacement from the second aperture along a second direction, parallel to the first plane, wherein the vertical displacement and the lateral displacement define a non-zero angle of inclination with respect to a perpendicular to the first plane.
    Type: Grant
    Filed: October 29, 2021
    Date of Patent: April 23, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Peter F. Kurunczi, Morgan Evans, Joseph C. Olson
  • Patent number: 11852853
    Abstract: A method is provided. The method includes exposing a first material disposed across a first plane on a first substrate to an ion beam to form a first plurality of structures in the first material, the ion beam directed at the first material at an ion beam angle ? relative to a surface normal of the first substrate. The first substrate is positioned at a first rotation angle ?1 between the ion beam and a first vector of the first plurality of structures, the first material is exposed to the ion beam incrementally along a first direction, and exposure of the first material to the ion beam is varied along the first direction to generate a depth variation between the first plurality of structures in the first direction.
    Type: Grant
    Filed: January 12, 2021
    Date of Patent: December 26, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Rutger Meyer Timmerman Thijssen, Morgan Evans, Maurice Emerson Peploski, Joseph C. Olson, Thomas James Soldi
  • Publication number: 20230389888
    Abstract: A method may include intravenously directing first bubbles into a patient's venous circulatory system and to a right side of the patient's heart. The first bubbles may have sizes that fall within a first range. The method may further include monitoring the patient's heart, with ultrasound imaging, to detect presence of the first bubbles on a left side of the patient's heart. Upon detecting the first bubbles on the left side of the patient's heart, the method may further include intravenously directing second bubbles into the patient's venous circulatory system and to the right side of the patient's heart. The second bubbles may have sizes that fall within a second range that is different than the first range. Upon detecting the second bubbles on the left side of the patient's heart, the method may further include initiating treatment to minimize risk of stroke in the patient.
    Type: Application
    Filed: April 5, 2023
    Publication date: December 7, 2023
    Applicant: Agitated Solutions Inc.
    Inventors: Morgan Evans, Micah Eimer, Jennifer Chmura, Ryan Kruchten
  • Publication number: 20230375774
    Abstract: Embodiments described herein relate to a method of using an apparatus for forming waveguides. The method includes positioning a substrate at a first rotation angle, exposing the substrate to an ion beam, forming first partial trenches defined by adjacent angled device structures with the first device angle, rotating the substrate to a second rotation angle, exposing the substrate to the ion beam, etching the first partial trenches, and repeating the method from about 1 cycle to about 100 cycles to form a plurality of trenches defined by adjacent angled device structures. The first rotation angle is selected to form one or more angled device structures with a first device angle relative to a vector parallel to the substrate. The ion beam is configured to contact the substrate at a beam angle ? relative to a surface normal of the substrate.
    Type: Application
    Filed: April 20, 2023
    Publication date: November 23, 2023
    Inventors: Thomas James SOLDI, Joseph OLSON, Morgan EVANS, Ludovic GODET
  • Publication number: 20230335375
    Abstract: A system may include a substrate stage, configured to support a substrate, where a main surface of the substrate defines a substrate plane. The system may include an ion source, including an extraction assembly that is oriented to direct an ion beam to the substrate along a trajectory defining a non-zero angle of incidence with respect to a perpendicular to the substrate plane. The system may include a radical source oriented to direct a radical beam to the substrate along a trajectory defining the non-zero angle of incidence with respect to a perpendicular to the substrate plane. The substrate stage may be further configured to scan the substrate along a first direction, lying with the substrate plane, while the main surface of the substrate is oriented within the substrate plane.
    Type: Application
    Filed: June 26, 2023
    Publication date: October 19, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Peter F. Kurunczi, Morgan Evans, Joseph C. Olson, Christopher A. Rowland, James Buonodono
  • Patent number: 11766744
    Abstract: Embodiments of the present application generally relate to methods for forming a plurality of gratings. The methods generally include depositing a material over one or more protected regions of a waveguide combiner disposed on a substrate, the material having a thickness inhibiting removal of a grating material disposed on the waveguide combiner when an ion beam is directed toward the substrate, and directing the ion beam toward the substrate. The methods disclosed herein allow for formation of a plurality of gratings in one or more unprotected regions, while no gratings are formed in the protected regions.
    Type: Grant
    Filed: February 11, 2022
    Date of Patent: September 26, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Morgan Evans, Joseph C. Olson, Rutger Meyer Timmerman Thijssen
  • Publication number: 20230260746
    Abstract: Embodiments described herein relate to methods and apparatus for forming gratings having a plurality of fins with different slant angles on a substrate and forming fins with different slant angles on successive substrates using angled etch systems and/or an optical device. The methods include positioning portions of substrates retained on a platen in a path of an ion beam. The substrates have a grating material disposed thereon. The ion beam is configured to contact the grating material at an ion beam angle ? relative to a surface normal of the substrates and form gratings in the grating material.
    Type: Application
    Filed: April 25, 2023
    Publication date: August 17, 2023
    Inventors: Joseph C. OLSON, Morgan EVANS, Rutger MEYER TIMMERMAN THIJSSEN
  • Publication number: 20230251430
    Abstract: A method for forming a device structure is disclosed. The method of forming a device structure includes forming a variable-depth structure in a device material layer using a laser ablation. A plurality of device structures is formed in the variable-depth structure to define slanted device structures therein. The variable-depth structure and the slanted device structures are formed using an etch process.
    Type: Application
    Filed: April 21, 2023
    Publication date: August 10, 2023
    Inventors: Peter KURUNCZI, Joseph C. OLSON, Morgan EVANS, Rutger MEYER TIMMERMAN THIJSSEN
  • Patent number: 11715621
    Abstract: A system may include a substrate stage, configured to support a substrate, where a main surface of the substrate defines a substrate plane. The system may include an ion source, including an extraction assembly that is oriented to direct an ion beam to the substrate along a trajectory defining a non-zero angle of incidence with respect to a perpendicular to the substrate plane. The system may include a radical source oriented to direct a radical beam to the substrate along a trajectory defining the non-zero angle of incidence with respect to a perpendicular to the substrate plane. The substrate stage may be further configured to scan the substrate along a first direction, lying with the substrate plane, while the main surface of the substrate is oriented within the substrate plane.
    Type: Grant
    Filed: August 8, 2019
    Date of Patent: August 1, 2023
    Assignee: APPLIED Materials, Inc.
    Inventors: Peter F. Kurunczi, Morgan Evans, Joseph C. Olson, Christopher A. Rowland, James Buonodono
  • Patent number: 11670482
    Abstract: Embodiments described herein relate to methods and apparatus for forming gratings having a plurality of fins with different slant angles on a substrate and forming fins with different slant angles on successive substrates using angled etch systems and/or an optical device. The methods include positioning portions of substrates retained on a platen in a path of an ion beam. The substrates have a grating material disposed thereon. The ion beam is configured to contact the grating material at an ion beam angle ? relative to a surface normal of the substrates and form gratings in the grating material.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: June 6, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Joseph C. Olson, Morgan Evans, Rutger Meyer Timmerman Thijssen
  • Patent number: 11662524
    Abstract: A method for forming a device structure is disclosed. The method of forming a device structure includes forming a variable-depth structure in a device material layer using a laser ablation. A plurality of device structures is formed in the variable-depth structure to define slanted device structures therein. The variable-depth structure and the slanted device structures are formed using an etch process.
    Type: Grant
    Filed: March 13, 2020
    Date of Patent: May 30, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Peter Kurunczi, Joseph Olson, Morgan Evans, Rutger Meyer Timmerman Thijssen
  • Patent number: 11554445
    Abstract: Embodiments of the present disclosure relate to methods for controlling etch depth by providing localized heating across a substrate. The method for controlling temperatures across the substrate can include individually controlling a plurality of heating pixels disposed in a dielectric body of a substrate support assembly. The plurality of heating pixels provide temperature distributions on a first surface of the substrate disposed on a support surface of the dielectric body. The temperature distributions correspond to a plurality of portions of at least one grating on a second surface of the substrate to be exposed to an ion beam. Additionally, the temperatures can be controlled by individually controlling light emitting diodes (LEDs) of LED arrays. The substrate is exposed to the ion beam to form a plurality of fins on the at least one grating. The at least one grating has a distribution of depths corresponding to the temperature distributions.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: January 17, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Morgan Evans, Joseph C. Olson
  • Publication number: 20230010821
    Abstract: An apparatus with a grating structure and a method for forming the same are disclosed. The grating structure includes forming a recess in a grating layer. A plurality of channels is formed in the grating layer to define slanted grating structures therein. The recess and the slanted grating structures are formed using a selective etch process.
    Type: Application
    Filed: September 19, 2022
    Publication date: January 12, 2023
    Inventors: Morgan EVANS, Rutger MEYER TIMMERMAN THIJSSEN
  • Patent number: 11512385
    Abstract: Embodiments of the disclosure generally relate to methods of forming gratings. The method includes depositing a resist material on a grating material disposed over a substrate, patterning the resist material into a resist layer, projecting a first ion beam to the first device area to form a first plurality of gratings, and projecting a second ion beam to the second device area to form a second plurality of gratings. Using a patterned resist layer allows for projecting an ion beam over a large area, which is often easier than focusing the ion beam in a specific area.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: November 29, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Joseph C. Olson, Ludovic Godet, Rutger Meyer Timmerman Thijssen, Morgan Evans, Jinxin Fu
  • Patent number: 11480724
    Abstract: An apparatus with a grating structure and a method for forming the same are disclosed. The grating structure includes forming a recess in a grating layer. A plurality of channels is formed in the grating layer to define slanted grating structures therein. The recess and the slanted grating structures are formed using a selective etch process.
    Type: Grant
    Filed: July 1, 2019
    Date of Patent: October 25, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Morgan Evans, Rutger Meyer Timmerman Thijssen
  • Patent number: 11456152
    Abstract: Embodiments described herein relate to methods and apparatus for forming gratings having a plurality of fins with different slant angles on a substrate and forming fins with different slant angles on successive substrates using angled etch systems and/or an optical device. The methods include positioning portions of substrates retained on a platen in a path of an ion beam. The substrates have a grating material disposed thereon. The ion beam is configured to contact the grating material at an ion beam angle ? relative to a surface normal of the substrates and form gratings in the grating material.
    Type: Grant
    Filed: December 5, 2019
    Date of Patent: September 27, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Joseph C. Olson, Morgan Evans, Rutger Meyer Timmerman Thijssen
  • Patent number: 11456205
    Abstract: Methods of producing grating materials with variable height fins are provided. In one example, a method may include providing a mask layer atop a substrate, the mask layer including a first opening over a first processing area and a second opening over a second processing area. The method may further include etching the substrate to recess the first and second processing areas, forming a grating material over the substrate, and etching the grating material in the first and second processing areas to form a plurality of structures oriented at a non-zero angle with respect to a vertical extending from a top surface of the substrate.
    Type: Grant
    Filed: May 11, 2020
    Date of Patent: September 27, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Morgan Evans, Joseph C. Olson, Rutger Meyer Timmerman Thijssen, Daniel Distaso, Ryan Boas
  • Publication number: 20220301926
    Abstract: Systems and methods discussed herein can be used to form gratings at various slant angles across a grating material on a single substrate by determining an ion beam angle and changing the angle of an ion beam among and between ion beam angles to form gratings with varying angles and cross-sectional geometries. The substrate can be rotated around a central axis, and one or more process parameters, such as a duty cycle of the ion beam, can be modulated to form a grating with a depth gradient.
    Type: Application
    Filed: June 3, 2022
    Publication date: September 22, 2022
    Inventors: Rutger MEYER TIMMERMAN THIJSSEN, Joseph C. OLSON, Morgan EVANS
  • Patent number: 11442207
    Abstract: Embodiments herein provide systems and methods for forming an optical component. A method may include providing a plurality of proximity masks between a plasma source and a workpiece, the workpiece including a plurality of substrates secured thereto. Each of the plurality of substrates may include first and second target areas. The method may further include delivering, from the plasma source, an angled ion beam towards the workpiece, wherein the angled ion beam is then received at one of the plurality of masks. A first proximity mask may include a first set of openings permitting the angled ion beam to pass therethrough to just the first target area of each of the plurality of substrates. A second proximity mask may include a second set of openings permitting the angled ion beam to pass therethrough just to the second target area of each of the plurality of substrates.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: September 13, 2022
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Morgan Evans, Rutger Meyer Timmerman Thijssen, Joseph Olson, Peter Kurunczi, Robert Masci
  • Publication number: 20220260764
    Abstract: Embodiments described herein relate to methods of forming gratings with different slant angles on a substrate and forming gratings with different slant angles on successive substrates using angled etch systems. The methods include positioning portions of substrates retained on a platen in a path of an ion beam. The substrates have a grating material disposed thereon. The ion beam is configured to contact the grating material at an ion beam angle relative to a surface normal of the substrates and form gratings in the grating material. The substrates are rotated about an axis of the platen resulting in rotation angles ? between the ion beam and a surface normal of the gratings. The gratings have slant angles relative to the surface normal of the substrates. The rotation angles ? selected by an equation ?=cos?1 (tan()/tan()).
    Type: Application
    Filed: May 5, 2022
    Publication date: August 18, 2022
    Inventors: Rutger MEYER TIMMERMAN THIJSSEN, Morgan EVANS, Joseph C. OLSON