Patents by Inventor Morgan Evans

Morgan Evans has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10886279
    Abstract: A memory device may include an active device region, disposed at least partially in a first level. The memory device may include a storage capacitor, disposed at least partially in a second level, above the first level, wherein the first level and the second level are parallel to a substrate plane. The memory device may also include a contact via, the contact via extending between the storage capacitor and the active device region, and defining a non-zero angle of inclination with respect to a perpendicular to the substrate plane.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: January 5, 2021
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Sony Varghese, Anthony Renau, Morgan Evans, John Hautala, Joe Olson
  • Patent number: 10823888
    Abstract: Methods of producing gratings with trenches having variable height are provided. In one example, a method of forming a diffracted optical element may include providing an optical grating layer over a substrate, patterning a hardmask over the optical grating layer, and forming a sacrificial layer over the hardmask, the sacrificial layer having a non-uniform height measured from a top surface of the optical grating layer. The method may further include etching a plurality of angled trenches into the optical grating layer to form an optical grating, wherein a first depth of a first trench of the plurality of trenches is different than a second depth of a second trench of the plurality of trenches.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: November 3, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Morgan Evans, Rutger Meyer Timmerman Thijssen, Joseph C. Olson
  • Patent number: 10818499
    Abstract: An optical grating component may include a substrate, and an optical grating, the optical grating being disposed on the substrate. The optical grating may include a plurality of angled structures, disposed at a non-zero angle of inclination with respect to a perpendicular to a plane of the substrate, wherein the plurality of angled structures are arranged to define a variable depth along a first direction, the first direction being parallel to the plane of the substrate.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: October 27, 2020
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: John Hautala, Morgan Evans, Rutger Meyer Timmerman Thijssen, Joseph C. Olson
  • Patent number: 10795173
    Abstract: Optical grating components and methods of forming are provided. In some embodiments, a method includes providing an optically transparent substrate, and forming an optical grating layer on the substrate. The method includes forming an optical grating in the optical grating layer, wherein the optical grating comprises a plurality of angled components, disposed at a non-zero angle of inclination with respect to a perpendicular to a plane of the substrate. A first sidewall of the optical grating may have a first angle, and a second sidewall of the grating has a second angle different than the first angle. Modifying process parameters, including selectivity and beam angle spread, has an effect of changing a shape or dimension of the plurality of angled components.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: October 6, 2020
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Morgan Evans, Rutger Meyer Timmerman Thijssen, Joseph Olson, Peter Kurunczi
  • Patent number: 10775158
    Abstract: Optical grating components and methods of forming are provided. In some embodiments, a method includes providing an optical grating layer, and forming an optical grating in the optical grating layer, wherein the optical grating comprises a plurality of angled trenches disposed at a non-zero angle of inclination with respect to a perpendicular to a plane of the optical grating layer. The method may further include delivering light from a light source into the optical grating layer, and measuring at least one of: an undiffracted portion of the light exiting the optical grating layer, and a diffracted portion of the light exiting the optical grating layer.
    Type: Grant
    Filed: January 4, 2019
    Date of Patent: September 15, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Joseph C. Olson, Ludovic Godet, Rutger Meyer Timmerman Thijssen, Morgan Evans
  • Publication number: 20200279852
    Abstract: A memory device may include an active device region, disposed at least partially in a first level. The memory device may include a storage capacitor, disposed at least partially in a second level, above the first level, wherein the first level and the second level are parallel to a substrate plane. The memory device may also include a contact via, the contact via extending between the storage capacitor and the active device region, and defining a non-zero angle of inclination with respect to a perpendicular to the substrate plane.
    Type: Application
    Filed: May 15, 2020
    Publication date: September 3, 2020
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Sony Varghese, Anthony Renau, Morgan Evans, John Hautala, Joe Olson
  • Patent number: 10761334
    Abstract: Optical grating components and methods of forming are provided. In some embodiments, a method includes providing an etch stop layer atop a substrate, and providing an optical grating layer atop the etch stop layer. The method may further include providing a patterned mask layer over the optical grating layer, and etching the optical grating layer and the patterned mask layer to form an optical grating in the optical grating layer. The optical grating may include a plurality of angled components, disposed at a non-zero angle of inclination with respect to a perpendicular to a plane of the substrate, wherein the etching forms an area of over-etch in the etch stop layer between the plurality of angled components.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: September 1, 2020
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Morgan Evans, Rutger Meyer Timmerman Thijssen, Joseph Olson, Peter Kurunczi
  • Publication number: 20200271944
    Abstract: Optical grating components and methods of forming are provided. In some embodiments, a method includes providing an optically transparent substrate, and forming an optical grating layer on the substrate. The method includes forming an optical grating in the optical grating layer, wherein the optical grating comprises a plurality of angled components, disposed at a non-zero angle of inclination with respect to a perpendicular to a plane of the substrate. A first sidewall of the optical grating may have a first angle, and a second sidewall of the grating has a second angle different than the first angle. Modifying process parameters, including selectivity and beam angle spread, has an effect of changing a shape or dimension of the plurality of angled components.
    Type: Application
    Filed: May 8, 2020
    Publication date: August 27, 2020
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Morgan Evans, Rutger Meyer Timmerman Thijssen, Joseph Olson, Peter Kurunczi
  • Publication number: 20200233125
    Abstract: Embodiments herein provide systems and methods for forming an optical component. A method may include providing a plurality of proximity masks between a plasma source and a workpiece, the workpiece including a plurality of substrates secured thereto. Each of the plurality of substrates may include first and second target areas. The method may further include delivering, from the plasma source, an angled ion beam towards the workpiece, wherein the angled ion beam is then received at one of the plurality of masks. A first proximity mask may include a first set of openings permitting the angled ion beam to pass therethrough to just the first target area of each of the plurality of substrates. A second proximity mask may include a second set of openings permitting the angled ion beam to pass therethrough just to the second target area of each of the plurality of substrates.
    Type: Application
    Filed: February 9, 2020
    Publication date: July 23, 2020
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Morgan Evans, Rutger Meyer Timmerman Thijssen, Joseph Olson, Peter Kurunczi, Robert Masci
  • Patent number: 10690821
    Abstract: Methods of producing gratings with trenches having variable height and width are provided. In one example, a method includes providing an optical grating layer atop a substrate, and providing a patterned hardmask over the optical grating layer. The method may include forming a mask over just a portion of the optical grating layer and the patterned hardmask, and etching a plurality of trenches into the optical grating layer to form an optical grating. After trench formation, at least one of the following grating characteristics varies between one or more trenches of the plurality of trenches: a trench depth and a trench width.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: June 23, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Morgan Evans, Rutger Meyer Timmerman Thijssen, Megan Clark
  • Patent number: 10692872
    Abstract: A memory device may include an active device region, disposed at least partially in a first level. The memory device may include a storage capacitor, disposed at least partially in a second level, above the first level, wherein the first level and the second level are parallel to a substrate plane. The memory device may also include a contact via, the contact via extending between the storage capacitor and the active device region, and defining a non-zero angle of inclination with respect to a perpendicular to the substrate plane.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: June 23, 2020
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Sony Varghese, Anthony Renau, Morgan Evans, John Hautala, Joe Olson
  • Publication number: 20200194227
    Abstract: Embodiments described herein relate to methods and apparatus for forming gratings having a plurality of fins with different slant angles on a substrate and forming fins with different slant angles on successive substrates using angled etch systems and/or an optical device. The methods include positioning portions of substrates retained on a platen in a path of an ion beam. The substrates have a grating material disposed thereon. The ion beam is configured to contact the grating material at an ion beam angle ? relative to a surface normal of the substrates and form gratings in the grating material.
    Type: Application
    Filed: December 5, 2019
    Publication date: June 18, 2020
    Inventors: Joseph C. OLSON, Morgan EVANS, Rutger MEYER TIMMERMAN THIJSSEN
  • Publication number: 20200194226
    Abstract: A system may include a substrate stage, configured to support a substrate, where a main surface of the substrate defines a substrate plane. The system may include an ion source, including an extraction assembly that is oriented to direct an ion beam to the substrate along a trajectory defining a non-zero angle of incidence with respect to a perpendicular to the substrate plane. The system may include a radical source oriented to direct a radical beam to the substrate along a trajectory defining the non-zero angle of incidence with respect to a perpendicular to the substrate plane. The substrate stage may be further configured to scan the substrate along a first direction, lying with the substrate plane, while the main surface of the substrate is oriented within the substrate plane.
    Type: Application
    Filed: August 8, 2019
    Publication date: June 18, 2020
    Applicant: APPLIED Materials, Inc.
    Inventors: Peter F. Kurunczi, Morgan Evans, Joseph C. Olson, Christopher A. Rowland, James Buonodono
  • Publication number: 20200192031
    Abstract: Embodiments of the present application generally relate to methods for forming a plurality of gratings. The methods generally include depositing a material over one or more protected regions of a waveguide combiner disposed on a substrate, the material having a thickness inhibiting removal of a grating material disposed on the waveguide combiner when an ion beam is directed toward the substrate, and directing the ion beam toward the substrate. The methods disclosed herein allow for formation of a plurality of gratings in one or more unprotected regions, while no gratings are formed in the protected regions.
    Type: Application
    Filed: December 17, 2019
    Publication date: June 18, 2020
    Inventors: Morgan EVANS, Joseph C. OLSON, Rutger MEYER TIMMERMAN THIJSSEN
  • Publication number: 20200190658
    Abstract: Embodiments of the disclosure relate to systems and methods for forming devices on a substrate. For example, a method for forming devices on a substrate can include projecting one or more ion beams from one or more ion beam chambers to form one or more devices on a first surface of a substrate and projecting one or more ion beams from one or more ion beam chambers to form one or more devices on a second surface of a substrate. In these embodiments, the first surface and the second surface are on opposite sides of the substrate. Therefore, the ion beams can form the devices on both sides of the substrate.
    Type: Application
    Filed: December 6, 2019
    Publication date: June 18, 2020
    Inventors: Joseph C. OLSON, Ludovic GODET, Rutger MEYER TIMMERMAN THIJSSEN, Morgan EVANS, Jinxin FU
  • Publication number: 20200194215
    Abstract: Embodiments herein provide systems and methods for multi-area selecting etching. In some embodiments, a system may include a plasma source delivering a plurality of angled ion beams to a substrate, the substrate including a plurality of devices. Each of the plurality of devices may include a first angled grating and a second angled grating. The system may further include a plurality of blocking masks positionable between the plasma source and the substrate. A first blocking mask of the plurality of blocking masks may include a first set of openings permitting the angled ion beams to pass therethrough to form the first angled gratings of each of the plurality of devices. A second blocking mask of the plurality of blocking masks may include a second set of openings permitting the angled ion beams to pass therethrough to form the second angled gratings of each of the plurality of devices.
    Type: Application
    Filed: March 1, 2019
    Publication date: June 18, 2020
    Applicant: Applied Materials, Inc.
    Inventors: Morgan Evans, Rutger Meyer Timmerman Thijssen
  • Publication number: 20200194228
    Abstract: Embodiments described herein relate to methods and apparatus for forming gratings having a plurality of fins with different slant angles on a substrate and forming fins with different slant angles on successive substrates using angled etch systems and/or an optical device. The methods include positioning portions of substrates retained on a platen in a path of an ion beam. The substrates have a grating material disposed thereon. The ion beam is configured to contact the grating material at an ion beam angle ? relative to a surface normal of the substrates and form gratings in the grating material.
    Type: Application
    Filed: December 5, 2019
    Publication date: June 18, 2020
    Inventors: Joseph C. OLSON, Morgan EVANS, Rutger MEYER TIMMERMAN THIJSSEN
  • Publication number: 20200192010
    Abstract: Embodiments of the disclosure generally relate to methods of forming gratings. The method includes depositing a resist material on a grating material disposed over a substrate, patterning the resist material into a resist layer, projecting a first ion beam to the first device area to form a first plurality of gratings, and projecting a second ion beam to the second device area to form a second plurality of gratings. Using a patterned resist layer allows for projecting an ion beam over a large area, which is often easier than focusing the ion beam in a specific area.
    Type: Application
    Filed: December 16, 2019
    Publication date: June 18, 2020
    Applicant: Applied Materials, Inc.
    Inventors: Joseph C. OLSON, Ludovic GODET, Rutger MEYER TIMMERMAN THIJSSEN, Morgan EVANS, Jinxin FU
  • Publication number: 20200189036
    Abstract: Embodiments of the present disclosure relate to methods for controlling etch depth by providing localized heating across a substrate. The method for controlling temperatures across the substrate can include individually controlling a plurality of heating pixels disposed in a dielectric body of a substrate support assembly. The plurality of heating pixels provide temperature distributions on a first surface of the substrate disposed on a support surface of the dielectric body. The temperature distributions correspond to a plurality of portions of at least one grating on a second surface of the substrate to be exposed to an ion beam. Additionally, the temperatures can be controlled by individually controlling light emitting diodes (LEDs) of LED arrays. The substrate is exposed to the ion beam to form a plurality of fins on the at least one grating. The at least one grating has a distribution of depths corresponding to the temperature distributions.
    Type: Application
    Filed: November 25, 2019
    Publication date: June 18, 2020
    Inventors: Morgan EVANS, Joseph C. OLSON
  • Publication number: 20200192009
    Abstract: Methods of producing gratings with trenches having variable height and width are provided. In one example, a method includes providing an optical grating layer atop a substrate, and providing a patterned hardmask over the optical grating layer. The method may include forming a mask over just a portion of the optical grating layer and the patterned hardmask, and etching a plurality of trenches into the optical grating layer to form an optical grating. After trench formation, at least one of the following grating characteristics varies between one or more trenches of the plurality of trenches: a trench depth and a trench width.
    Type: Application
    Filed: March 11, 2019
    Publication date: June 18, 2020
    Applicant: APPLIED Materials, Inc.
    Inventors: Morgan Evans, Rutger Meyer Timmerman Thijssen, Megan Clark