Patents by Inventor Morteza Safai

Morteza Safai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11198261
    Abstract: Disclosed herein is a system that comprises a deposition head configured to deposit multiple tows in a stacked configuration one layer at a time. Each tow of the multiple tows is a currently-applied tow when the tow is a most-recently deposited tow of the multiple tows and a tow of the multiple tows is a covered tow when the tow is directly covered by the currently-applied tow. The system also comprises a probe head, configured to move along and be spatially offset from the currently-applied tow after deposition of the currently-applied tow. The probe head is further configured to transmit an incident microwave beam into the currently-applied tow as the probe head moves along the currently-applied tow. The incident microwave beam has a frequency low enough to pass entirely through the currently-applied tow and high enough to pass entirely through no more than the currently-applied tow and the covered tow.
    Type: Grant
    Filed: June 3, 2020
    Date of Patent: December 14, 2021
    Assignee: The Boeing Company
    Inventors: Morteza Safai, Gary E. Georgeson
  • Publication number: 20210379843
    Abstract: Disclosed herein is a system that comprises a deposition head configured to deposit multiple tows in a stacked configuration one layer at a time. Each tow of the multiple tows is a currently-applied tow when the tow is a most-recently deposited tow of the multiple tows and a tow of the multiple tows is a covered tow when the tow is directly covered by the currently-applied tow. The system also comprises a probe head, configured to move along and be spatially offset from the currently-applied tow after deposition of the currently-applied tow. The probe head is further configured to transmit an incident microwave beam into the currently-applied tow as the probe head moves along the currently-applied tow. The incident microwave beam has a frequency low enough to pass entirely through the currently-applied tow and high enough to pass entirely through no more than the currently-applied tow and the covered tow.
    Type: Application
    Filed: June 3, 2020
    Publication date: December 9, 2021
    Inventors: Morteza Safai, Gary E. Georgeson
  • Patent number: 11189982
    Abstract: An example laser system includes a laser, a plurality of pulse stretchers coupled together in series, a feedback module, and a lens assembly. The plurality of pulse stretchers is configured to stretch pulse widths of laser pulses provided by the laser and to output stretched laser pulses. The feedback module includes a pulse delay comparator that is configured to compare a first laser pulse of the laser pulses to a corresponding first stretched laser pulse of the stretched laser pulses. The feedback module also includes a computing device that is configured to determine, based on a result of the comparing by the pulse delay comparator, an adjustment to a pulse stretcher of the plurality of pulse stretchers, and apply the adjustment to the pulse stretcher so as to modify a shape of a second stretched laser pulse of the stretched laser pulses.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: November 30, 2021
    Assignee: The Boeing Company
    Inventor: Morteza Safai
  • Patent number: 11187679
    Abstract: Disclosed herein is a laser ultrasonic testing (UT) apparatus for inspecting a surface of an object. The laser UT apparatus comprises an excitation laser, which is selectively operable to generate an excitation laser beam. The laser UT apparatus also comprises a first acousto-optic deflector (AOD) and a second AOD. The laser UT apparatus additionally comprises a detection laser, which is selectively operable to generate a detection laser beam. The laser UT apparatus further comprises a third AOD and a fourth AOD.
    Type: Grant
    Filed: May 20, 2020
    Date of Patent: November 30, 2021
    Assignee: The Boeing Company
    Inventor: Morteza Safai
  • Publication number: 20210364476
    Abstract: Disclosed herein is a laser ultrasonic testing (UT) apparatus for inspecting a surface of an object. The laser UT apparatus comprises an excitation laser, which is selectively operable to generate an excitation laser beam. The laser UT apparatus also comprises a first acousto-optic deflector (AOD) and a second AOD. The laser UT apparatus additionally comprises a detection laser, which is selectively operable to generate a detection laser beam. The laser UT apparatus further comprises a third AOD and a fourth AOD.
    Type: Application
    Filed: May 20, 2020
    Publication date: November 25, 2021
    Inventor: Morteza Safai
  • Patent number: 11181518
    Abstract: A system for evaluating a bond includes first and second electrodes. A dielectric material layer is positioned at least partially between the first and second electrodes. A power source is connected to the first and second electrodes. The power source is configured to cause the first and second electrodes to generate an electrical arc. The electrical arc is configured to at least partially ablate a sacrificial material layer to generate a plasma.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: November 23, 2021
    Assignee: The Boeing Company
    Inventor: Morteza Safai
  • Publication number: 20210356404
    Abstract: A method for real-time surface imperfection detection for additive manufacturing and 3-D printing parts is provided. The method includes directing a first light radiation using one or more illumination sources, wherein the first light radiation illuminates a target area of a part being manufactured in a uniform chromatic light such that the target area appears to have a substantially uniform monochromatic color; capturing a current image of a second light radiation that is scattered or reflected by the target area using one or more feedback cameras; and analyzing the current image of the second light radiation using at least one of the one or more feedback camera with a previously acquired image to determine whether a surface imperfection exists or does not exist.
    Type: Application
    Filed: May 14, 2020
    Publication date: November 18, 2021
    Applicant: The Boeing Company
    Inventor: Morteza Safai
  • Patent number: 11173664
    Abstract: Various techniques are provided to utilize nanostructures for process monitoring and feedback control. In one example, a method includes forming a layer of material including nanostructures distributed therein. Each nanostructure includes a quantum dot and a shell encompassing the quantum dot. The shells and quantum dots are configured to emit a first and second wavelength, respectively, in response to an excitation signal. The method further includes applying the excitation signal to at least a portion of the layer of material. The method further includes detecting an emitted signal from the portion of the layer of material, where the emitted signal is provided by at least a subset of the nanostructures in response to the excitation signal. The method further includes determining whether a manufacturing characteristic has been satisfied based at least on a wavelength of the emitted signal. Related systems and products are also provided.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: November 16, 2021
    Assignee: The Boeing Company
    Inventors: Morteza Safai, Gary E. Georgeson
  • Patent number: 11169098
    Abstract: Disclosed herein is an x-ray backscatter apparatus for non-destructive inspection of a part. The apparatus comprises an emission shaping mechanism that is configured to receive an electron emission from a cathode and to adjust a shape of the electron emission from a circular cross-sectional shape into a first elliptical cross-sectional shape. The x-ray source further comprises an anode that is configured to convert the electron emission into an unfiltered x-ray emission having a second elliptical cross-sectional shape. The apparatus also comprises an x-ray filter that comprises an emission aperture having a cross-sectional area smaller than an area of the second elliptical cross-sectional shape of the unfiltered x-ray emission. The x-ray filter is located relative to the unfiltered x-ray emission to allow only a portion of the unfiltered x-ray emission to pass through the emission aperture and form a filtered x-ray emission.
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: November 9, 2021
    Assignee: The Boeing Company
    Inventor: Morteza Safai
  • Patent number: 11169021
    Abstract: A UV detection device is removably attached to a surface of a structure and includes a photodetector to detect UV light incident on the structure. The UV detection device includes signal processing and a transmitter that wirelessly transmits UV detection data to a remote monitoring station where the detection signals are accumulated and analyzed to determine the total exposure of the structure to UV light.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: November 9, 2021
    Assignee: The Boeing Company
    Inventor: Morteza Safai
  • Publication number: 20210327050
    Abstract: An example system includes a sensor housing defining a plurality of horizontal layers and a controller. The sensor housing includes a plurality of light-emitted diode (LED) light sources, a plurality of cameras, and a plurality of optical devices. Each camera of the plurality of cameras is positioned within a respective horizontal layer of the plurality of horizontal layers and configured to detect a respective range of wavelengths of light. The plurality of optical devices is configured to receive light reflected by the surface through a common input lens and direct the light to one of the cameras of the plurality of cameras depending on a wavelength of the light. The controller is configured to receive signals from the plurality of cameras indicative of the light reflected by the surface and determine whether there is any foreign object debris material on the surface using the signals from the plurality of cameras.
    Type: Application
    Filed: July 1, 2021
    Publication date: October 21, 2021
    Inventor: Morteza Safai
  • Publication number: 20210310967
    Abstract: Disclosed herein is an x-ray backscatter apparatus for non-destructive inspection of a part. The apparatus comprises an emission shaping mechanism that is configured to receive an electron emission from a cathode and to adjust a shape of the electron emission from a circular cross-sectional shape into a first elliptical cross-sectional shape. The x-ray source further comprises an anode that is configured to convert the electron emission into an unfiltered x-ray emission having a second elliptical cross-sectional shape. The apparatus also comprises an x-ray filter that comprises an emission aperture having a cross-sectional area smaller than an area of the second elliptical cross-sectional shape of the unfiltered x-ray emission. The x-ray filter is located relative to the unfiltered x-ray emission to allow only a portion of the unfiltered x-ray emission to pass through the emission aperture and form a filtered x-ray emission.
    Type: Application
    Filed: April 2, 2020
    Publication date: October 7, 2021
    Inventor: Morteza Safai
  • Publication number: 20210304398
    Abstract: A method of thermographic inspection is disclosed, including applying a thermal pulse to a surface and capturing an image of a thermal response of the surface. The image is captured with an infrared camera through a polarizer having a first orientation. The method further includes determining, by analysis of the image, whether the thermal response is indicative of a crack on the surface.
    Type: Application
    Filed: March 31, 2020
    Publication date: September 30, 2021
    Applicant: The Boeing Company
    Inventors: Morteza Safai, Gary Ernest Georgeson
  • Publication number: 20210305005
    Abstract: Disclosed herein is an x-ray backscatter apparatus (“apparatus”) for non-destructive inspection of an object. The apparatus includes an x-ray emitter that includes a vacuum tube, an x-ray shield enclosed within the vacuum tube. The x-ray shield includes at least one emission aperture. The apparatus also includes a cathode enclosed within the vacuum tube and that is operable to generate an electron stream. Also included is an anode, enclosed within the vacuum tube and located relative to the cathode, to receive the electron stream and convert the electron stream from the cathode to an x-ray stream, and located relative to the emission aperture to direct at least a portion of the x-ray stream through the at least one emission aperture. Also disclosed are a system and a method that utilize the apparatus.
    Type: Application
    Filed: March 27, 2020
    Publication date: September 30, 2021
    Inventor: Morteza Safai
  • Publication number: 20210293760
    Abstract: Disclosed herein is a system and method for inspecting a bonded structure in a component. The system includes an integrated probe and a processor coupled to the integrated probe. The integrated probe includes an ultrasonic component and a laser component. The ultrasonic component is configured to transmit pulsed sound waves into the bonded structure and receive reflected pulsed sound waves from the bonded structure. The laser component is configured to generate laser pulses and direct the laser pulses to the bonded structure to generate tension waves across the bonded structure. The processor is configured to test a bonded structure in the component. Further, the processor includes a pre-test module configured to operate the ultrasonic component in a pre-test mode, a test module configured to operate the laser component in a test mode, and a post-test module configured to operate the ultrasonic component in a post-test mode.
    Type: Application
    Filed: March 19, 2020
    Publication date: September 23, 2021
    Inventor: Morteza Safai
  • Patent number: 11119058
    Abstract: Methods, apparatuses, and systems are disclosed for generating X-ray backscatter images of a target by employing a flexible, deformable and flexible X-ray backscatter detector comprising a scintillating material layer comprising a scintillating jet print ink.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: September 14, 2021
    Assignee: The Boeing Company
    Inventor: Morteza Safai
  • Patent number: 11112370
    Abstract: Provided are backscatter detection systems and methods implementing sensor arrays comprising flexible scintillators, and associated methods of operations. Specifically, an apparatus for detecting backscatter of a radiation beam formed in response to the radiation beam encountering an object comprises a structure configured to change from a first shape to a second shape. The apparatus further comprises a sensor array which comprises a flexible scintillating panel covering an area of the structure, and configured to conform to the shape of the structure form the first shape to the second shape. The flexible scintillating panel may comprise a plurality of optical fibers enclosed in a semi-rigid casing and coupled to a light detector. The plurality of optical fibers may be arranged in one or more layers. A layer of optical fibers may be arranged in a plurality of clusters or in an interwoven configuration.
    Type: Grant
    Filed: January 4, 2019
    Date of Patent: September 7, 2021
    Assignee: The Boeing Company
    Inventor: Morteza Safai
  • Patent number: 11080842
    Abstract: An example system includes a sensor housing defining a plurality of horizontal layers and a controller. The sensor housing includes a plurality of light-emitted diode (LED) light sources, a plurality of cameras, and a plurality of optical devices. Each camera of the plurality of cameras is positioned within a respective horizontal layer of the plurality of horizontal layers and configured to detect a respective range of wavelengths of light. The plurality of optical devices is configured to receive light reflected by the surface through a common input lens and direct the light to one of the cameras of the plurality of cameras depending on a wavelength of the light. The controller is configured to receive signals from the plurality of cameras indicative of the light reflected by the surface and determine whether there is any foreign object debris material on the surface using the signals from the plurality of cameras.
    Type: Grant
    Filed: April 1, 2020
    Date of Patent: August 3, 2021
    Assignee: THE BOEING COMPANY
    Inventor: Morteza Safai
  • Patent number: 11061149
    Abstract: Disclosed herein is a scintillator for use in an x-ray backscattering system. The scintillator comprises an inorganic scintillator portion made of inorganic scintillating material and comprising one or more inorganic material elements. Each inorganic material element of the one or more inorganic material elements comprises an outer surface, and an inner surface opposite the outer surface. The outer surface is configured to be proximate to a subject to be scanned, such that the outer surface is configured to receive x-ray photons scattered by the subject. The scintillator also comprises an organic scintillator portion made of an organic scintillating material and comprising a front surface. At least a portion of the front surface abuts the inner surface of at least one of the one or more inorganic material elements.
    Type: Grant
    Filed: August 19, 2019
    Date of Patent: July 13, 2021
    Assignee: The Boeing Company
    Inventor: Morteza Safai
  • Publication number: 20210208086
    Abstract: An x-ray source for a backscatter imager can include a first electron beam (e-beam) emitter for emitting a first e-beam and at least a second e-beam emitter for emitting at least a second e-beam. The first and second e-beam emitters can be powered by a at least one power supply, and can be configured to direct the first e-beam and the second e-beam toward an anode. An interaction of the anode with the first and second e-beams produces x-rays. The x-ray source is configured to output an amount of x-rays equivalent to a conventional x-ray source that includes a single e-beam emitter. However, because the x-ray source uses at least two e-beam emitters and a single anode, the power source required to power the e-beam emitters can operate at a lower wattage than a conventional power source powering the single e-beam emitter. The x-ray source is thus lighter in weight and outputs less radiation than conventional systems with a comparable x-ray output.
    Type: Application
    Filed: January 7, 2020
    Publication date: July 8, 2021
    Applicant: The Boeing Company
    Inventor: Morteza Safai