Patents by Inventor Motonobu Takeya

Motonobu Takeya has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040206975
    Abstract: In a multi-beam semiconductor laser including nitride III-V compound semiconductor layers stacked on one surface of a substrate of sapphire or other material to form laser structures, and including a plurality of anode electrodes and a plurality of cathode electrodes formed on the nitride III-V compound semiconductor layers, one of the anode electrodes is formed to bridge over one of the cathode electrodes via an insulating film, and another anode electrode is formed to bridge over another of the cathode electrodes via an insulating film.
    Type: Application
    Filed: February 6, 2004
    Publication date: October 21, 2004
    Inventors: Tsuyoshi Tojo, Yoshifumi Yabuki, Shinichi Ansai, Tomonori Hino, Osamu Goto, Tsuyoshi Fujimoto, Osamu Matsumoto, Motonobu Takeya, Yoshio Oofuji
  • Patent number: 6797595
    Abstract: A method of heat-treating a nitride compound semiconductor layer, comprising heating a nitride compound semiconductor layer doped with a p-type impurity at a temperature that is at least 200° C. but less than 400° C. for at least 100 minutes.
    Type: Grant
    Filed: January 24, 2003
    Date of Patent: September 28, 2004
    Assignee: Sony Corporation
    Inventor: Motonobu Takeya
  • Publication number: 20040087048
    Abstract: Provided is a method of manufacturing a semiconductor device, which is adapted to prevent the deposition of a material on a laser light emitting edge, thereby enabling an improvement in longevity characteristics of a laser. A base having a laser chip mounted thereon is irradiated with an energy beam having a shorter wavelength than an oscillation wavelength of the laser chip. Photolysis and oxidation caused by the energy beam cause the removal of an adherent from the overall base or the deterioration thereof, and incidentally, the adherent is derived from an adhesive sheet used to attach the laser chip to the base, or the like. Preferably, laser light or ultraviolet light, for example, is used as the energy beam. Alternatively, the base having the laser chip mounted thereon may be irradiated with plasma so as to remove the adherent utilizing an ion cleaning effect of the plasma. After irradiation, a top is mounted to the base so as to shut off the laser chip from the outside.
    Type: Application
    Filed: July 3, 2003
    Publication date: May 6, 2004
    Inventors: Takashi Mizuno, Motonobu Takeya, Takeharu Asano, Masao Ikeda
  • Publication number: 20040056259
    Abstract: A semiconductor light emitting device made of nitride III-V compound semiconductors is includes an active layer made of a first nitride III-V compound semiconductor containing In and Ga, such as InGaN; an intermediate layer made of a second nitride III-V compound semiconductor containing In and Ga and different from the first nitride III-V compound semiconductor, such as InGaN; and a cap layer made of a third nitride III-V compound semiconductor containing Al and Ga, such as p-type AlGaN, which are deposited in sequential contact.
    Type: Application
    Filed: June 25, 2003
    Publication date: March 25, 2004
    Inventors: Osamu Goto, Takeharu Asano, Yasuhiko Suzuki, Motonobu Takeya, Katsuyoshi Shibuya, Takashi Mizuno, Tsuyoshi Tojo, Shiro Uchida, Masao Ikeda
  • Publication number: 20030227026
    Abstract: A nitride semiconductor having a large low-defect region in a surface thereof, and a semiconductor device using the same are provided. Also, a manufacturing method for a nitride semiconductor comprising a layer formation step using a transverse growth technique where surface defects can easily be reduced, and a manufacturing method for a semiconductor device using the same are provided. On a substrate, a seed crystal part is formed in a stripe pattern with a buffer layer in between. Next, crystals are grown from the seed crystal part in two stages of growth conditions to form a nitride semiconductor layer. Low temperature growing parts with a trapezoid shaped cross section are formed at a growth temperature of 1030° C. in the first stage and a transverse growth is dominantly advanced at a growth temperature of 1070° C. to form a high temperature growing part between the low temperature growing parts in the second stage.
    Type: Application
    Filed: February 24, 2003
    Publication date: December 11, 2003
    Inventors: Osamu Goto, Takeharu Asano, Motonobu Takeya, Katsunori Yanashima, Shinro Ikeda, Katsuyoshi Shibuya, Yasuhiko Suzuki
  • Publication number: 20030143770
    Abstract: A method of heat-treating a nitride compound semiconductor layer, comprising heating a nitride compound semiconductor layer doped with a p-type impurity at a temperature that is at least 200° C. but less than 400° C. for at least 100 minutes.
    Type: Application
    Filed: January 24, 2003
    Publication date: July 31, 2003
    Inventor: Motonobu Takeya
  • Publication number: 20030136970
    Abstract: In a semiconductor light emitting device such as a semiconductor laser using nitride III-V compound semiconductors and having a structure interposing an active layer between an n-side cladding layer and a p-side cladding layer, the p-side cladding layer is made of an undoped or n-type first layer 9 and a p-type second layer 12 that are deposited sequentially from nearer to remoter from the active layer. The first layer 9 is not thinner than 50 nm. The p-type second layer 12 includes a p-type third layer having a larger band gap inserted therein as an electron blocking layer. Thus the semiconductor light emitting device is reduced in operation voltage while keeping a thickness of the p-side cladding layer necessary for ensuring favorable optical properties.
    Type: Application
    Filed: January 23, 2003
    Publication date: July 24, 2003
    Inventors: Motonobu Takeya, Takeharu Asano, Masao Ikeda
  • Publication number: 20030124877
    Abstract: A method of heat-treating a nitride compound semiconductor layer, comprising heating a nitride compound semiconductor layer doped with a p-type impurity at a temperature that is at least 200° C. but less than 400° C. for at least 100 minutes.
    Type: Application
    Filed: December 23, 2002
    Publication date: July 3, 2003
    Inventor: Motonobu Takeya
  • Publication number: 20030045103
    Abstract: When GaN or other nitride III-V compound semiconductor layers are grown on a substrate such as a sapphire substrate, thickness x of the substrate relative to thickness y of the nitride III-V compound semiconductor layers is controlled to satisfy 0<y/x≦0.011 and x≧450 &mgr;m. Alternatively, if the maximum dimension of the substrate is D (cm), its warpage H is in the range of 0<H≦70×10−4 (cm), and Z=y/x, D is controlled to satisfy the relation 0<D<(2/CZ)cos−1(1-HCZ), where C (cm−1) is the proportionality constant when the radius of curvature of the substrate &rgr; (cm) is expressed as 1/&rgr;=CZ.
    Type: Application
    Filed: August 27, 2002
    Publication date: March 6, 2003
    Inventors: Yasuhiko Suzuki, Takeharu Asano, Motonobu Takeya, Osamu Goto, Shinro Ikeda, Katsuyoshi Shibuya
  • Patent number: 6524976
    Abstract: A method of heat-treating a nitride compound semiconductor layer, comprising heating a nitride compound semiconductor layer doped with a p-type impurity at a temperature that is at least 200° C. but less than 400° C. for at least 100 minutes.
    Type: Grant
    Filed: August 9, 2001
    Date of Patent: February 25, 2003
    Assignee: Sony Corporation
    Inventor: Motonobu Takeya
  • Patent number: 6524882
    Abstract: A nitride based III-V compound semiconductor doped with a p-type impurity is formed on a substrate made from sapphire. The substrate is then placed between a pair of RF electrodes, and a radio frequency field is applied between the RF electrodes. With this operation, electrons present in the compound semiconductor attack the bonding between the p-type impurity and hydrogen, to cut the bonding. The hydrogen atoms thus dissociated are released from the compound semiconductor, to thereby activate the p-type impurity. In this case, it is not required to heat the compound semiconductor by a heater or the like.
    Type: Grant
    Filed: April 3, 2001
    Date of Patent: February 25, 2003
    Assignee: Sony Corporation
    Inventors: Motonobu Takeya, Satoshi Taniguchi
  • Publication number: 20030020087
    Abstract: Provided is a nitride semiconductor having a larger low-defective region on a surface thereof, a semiconductor device using the nitride semiconductor, a method of manufacturing a nitride semiconductor capable of easily reducing surface defects in a step of forming a layer through lateral growth, and a method of manufacturing a semiconductor device manufactured by the use of the nitride semiconductor. A seed crystal portion is formed into stripes on a substrate with a buffer layer sandwiched therebetween. Then, a crystal is grown from the seed crystal portion in two steps of growth conditions to form a nitride semiconductor layer. In a first step, a low temperature growth portion having a trapezoidal-shaped cross section in a layer thickness direction is formed at a growth temperature of 1030° C., and in a second step, lateral growth predominantly takes place at a growth temperature of 1070° C. Then, a high temperature growth potion is formed between the low temperature growth portions.
    Type: Application
    Filed: April 24, 2002
    Publication date: January 30, 2003
    Inventors: Osamu Goto, Takeharu Asano, Motonobu Takeya, Katsunori Yanashima
  • Patent number: 6509579
    Abstract: To provide a semiconductor device capable of preventing the bowing of the substrate, and having a semiconductor layer of a III-V group compound of a nitride system with excellent crystallinity. The semiconductor layer of the III-V group compound of the nitride system whose thickness is equal to or less than 8 &mgr;m, is provided onto a substrate made of sapphire. This reduces the bowing of the substrate due to differences in a thermal expansion coefficient and a lattice constant between the substrate and the semiconductor layer of the III-V group compound of the nitride system. An n-side contact layer forming the semiconductor layer of the III-V group of the nitride system has partially a lateral growth region made by growing in a lateral direction from a crystalline part of a seed crystal layer. In the lateral growth region, dislocation density restricts low, therefore, regions corresponding to the lateral growth region of each layer formed onto the n-side contact layer has excellent crystallinity.
    Type: Grant
    Filed: January 16, 2001
    Date of Patent: January 21, 2003
    Assignee: Sony Corporation
    Inventors: Motonobu Takeya, Katsunori Yanashima, Masao Ikeda, Takeharu Asano, Shinro Ikeda, Tomonori Hino, Katsuyoshi Shibuya
  • Publication number: 20020064195
    Abstract: A semiconductor laser, a semiconductor device and a nitride series III-V group compound substrate capable of obtaining a crystal growth layer with less fluctuation of the crystallographic axes and capable of improving the device characteristics, as well as a manufacturing method therefor are provided. The semiconductor laser comprises, on one surface of a substrate used for growing, a plurality of spaced apart seed crystal layers and an n-side contact layer having a lateral growing region which is grown on the basis of the plurality of seed crystal layers. The seed crystal layer is formed in that a product of width w1 (unit: &mgr;m) at the boundary thereof relative to the n-side contact layer along the arranging direction A and a thickness t1 (unit: &mgr;m) along the direction of laminating the n-side contact layer is 15 or less.
    Type: Application
    Filed: June 5, 2001
    Publication date: May 30, 2002
    Inventors: Motonobu Takeya, Katsunori Yanashima, Takeharu Asano, Osamu Goto, Shinro Ikeda, Katsuyoshi Shibuya, Tomonori Hino, Satoru Kijima, Masao Ikeda
  • Publication number: 20020055274
    Abstract: A method of heat-treating a nitride compound semiconductor layer, comprising heating a nitride compound semiconductor layer doped with a p-type impurity at a temperature that is at least 200° C. but less than 400° C. for at least 100 minutes.
    Type: Application
    Filed: August 9, 2001
    Publication date: May 9, 2002
    Inventor: Motonobu Takeya
  • Publication number: 20010055871
    Abstract: A nitride based III-V compound semiconductor doped with a p-type impurity is formed on a substrate made from sapphire. The substrate is then placed between a pair of RF electrodes, and a radio frequency field is applied between the RF electrodes. With this operation, electrons present in the compound semiconductor attack the bonding between the p-type impurity and hydrogen, to cut the bonding. The hydrogen atoms thus dissociated are released from the compound semiconductor, to thereby activate the p-type impurity. In this case, it is not required to heat the compound semiconductor by a heater or the like.
    Type: Application
    Filed: April 3, 2001
    Publication date: December 27, 2001
    Inventors: Motonobu Takeya, Satoshi Taniguchi
  • Publication number: 20010035534
    Abstract: To provide a semiconductor device capable of preventing the bowing of the substrate, and having a semiconductor layer of a III-V group compound of a nitride system with excellent crystallinity.
    Type: Application
    Filed: January 16, 2001
    Publication date: November 1, 2001
    Inventors: Motonobu Takeya, Katsunori Yanashima, Masao Ikeda, Takeharu Asano, Shinro Ikeda, Tomonori Hino, Katsuyoshi Shibuya
  • Publication number: 20010025989
    Abstract: To provide a semiconductor device capable of enhancing crystallinity of a semiconductor of a III-V group compound of a nitride system formed on a sapphire substrate and to provide a method of manufacturing the same.
    Type: Application
    Filed: January 12, 2001
    Publication date: October 4, 2001
    Inventors: Katsuyoshi Shibuya, Takeharu Asano, Satoru Kijima, Katsunori Yanashima, Motonobu Takeya, Masao Ikeda, Tomonori Hino, Takashi Yamaguchi, Shinro Ikeda, Osamu Goto